Alsatelecom.ru

Стройматериалы
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Важная величина: как узнать время схватывания бетона

Важная величина: как узнать время схватывания бетона

Стадии набора прочности бетона

Как происходит превращение подвижного раствора в твердое вещество?

Чтобы понимать этот процесс, нужно представлять состав бетона.

Главным компонентом бетонной смеси является портландцемент. Это вяжущее составляющее, в основе которого 4 минерала:

  1. C2S двухкальциевый силикат,
  2. C3S трёхкальциевый силикат,
  3. C3A трёхкальциевый алюминат,
  4. C4AF четырёхкальциевый алюмоферрит.

Для приготовления бетонной смеси портландцемент смешивается с водой и заполнителями (шлак, гравий, щебень, песок). Иногда в смесь добавляются те или иные присадки, в зависимости от желаемых свойств бетона.

Минералы, входящие в состав цементного клинкера, при смачивании водой вступают в реакцию гидратации, в процессе которой образуются новые соединения, и бетон образует кристаллическую структуру.

Таким образом, твердение бетона – это кристаллохимический процесс.

В твердении бетона выделяют две стадии:

  1. схватывание бетона,
  2. набор прочности.

Бетон начинает схватываться уже через 2 часа, а через 60 минут после начала процесса он уже схватится. Пока бетон не схватился, его подвижность сохраняется.

Иногда, при невозможности немедленно заняться укладкой бетона, смесь слишком долго перемешивают, чтобы она не схватывалась. Это влияет на качество бетона не лучшим образом.

После того, как бетон схватился, начинается процесс твердения.

Маркировка

Узнать быстротвердеющий цемент можно по букве «Б» в маркировке на упаковке. Из обозначения также понятно, каким образом достигается эффект ускоренного набора прочности:

  • Д0 – отсутствие дополнительных добавок минерального происхождения;
  • Д5…Д20 – наличие в цементе от 5 до 20% дополнительных присадок в виде алюминатов и силикатов.

Пример обозначения ПЦ 400-Д20-Б-ПЛ ГОСТ 10178-85:

  • ПЦ 400 – портландцемент, марка прочности М400;
  • Д20 – 20% минеральных добавок в составе вяжущего порошка;
  • Б – быстротвердеющий цемент;
  • ПЛ – пластифицированный (дополнительные свойства);
  • ГОСТ 10178-85 – обозначение документа, согласно нормам которого произведен материал.

Сколько времени требуется на застывание

Полное отвердевание бетона может продолжаться многие месяцы, но во время строительных работ нужны определенные ориентиры, которых можно придерживаться.

Преждевременная нагрузка на бетонную конструкцию может разрушить не набравший достаточной прочности бетон, а передерживание бетона в опалубке удорожает строительные работы и увеличивает продолжительность строительства.

Расчетной прочностью бетона называют ту прочность, которую бетон определенного класса достигает при нормальных условиях через 28 дней.

Срок твердения бетона без добавок

Как быстро бетон наберет прочность, зависит от многих факторов. В нормальных условиях скорость отвердевания бетона без добавок зависит от класса бетона.

В быту до сих пор встречается словосочетание «марка бетона». Оно ошибочно: по маркам классифицируется цемент, а бетон подразделяется на классы.

Таблица 1. Старая и новая маркировка бетона

Марка и класс бетона: в чем разница?

Факторы, влияющие на твердение цементного раствора

Срок застывания бетона зависит от различных факторов:

  1. качества исходных материалов;
  2. количества заполнителей;
  3. жесткости смеси;
  4. температуры и влажности воздуха;
  5. обработки бетона (утрамбовывание, виброобработка);
  6. ухода за бетоном;
  7. использования специальных добавок.

Согласно ГОСТ, нормальными условиями твердения бетона являются:

  1. температура воздуха 18–22°С;
  2. относительная влажность воздуха 100%.

При изменении температуры меняется и скорость затвердевания бетона. При повышении температуры в диапазоне 0°С – 100°С каждые 10°С повышения температуры увеличивают скорость протекающих процессов в 2–4 раза.

График твердения бетона при разных температурах

Когда температура становится выше, схватывание и отвердение бетона ускоряются; при понижении температуры – замедляются. При температуре ниже 5° С процесс набора прочности резко замедляется, а при отрицательных температурах прекращается.

Уменьшение влажности воздуха замедляет процесс застывания, поскольку бетон быстрее сохнет, и воды становится недостаточно для гидратации.

Сроки хранения цемента

По нормативам материал хранят не более 45 суток – это для субстанции с быстрым свойством отвердения и не более 60 суток для прочих типов цемента. Укладывают мешки в сухие помещения с хорошей вентиляцией. Штабелируют на поддоны из дерева или пластика. Высота стопки при условии горизонтальной выкладки должна быть не более 180 см.

Нормативы закреплены в ГОСТ 30515-97. Гарантийный срок на товар начинается не с момента складирования материала у покупателя, а с даты отгрузки от поставщика. Поэтому если цемент в мешках уже месяц полежал на складе в магазине, его жизнеспособность закончится очень быстро.
И еще один разумный совет: если сухой цемент пересыпать в сухие герметичные бочки из пластика или металла, хорошо закупорить и хранить в условиях минимальной влажности, он сохранит свои свойства в течение 1-1,5 лет.

Способы регулирования скорости отвердевания бетона

В зависимости от задач, может потребоваться увеличить или снизить скорость твердения бетона. Можно повлиять на процессы температурно или химически.

Читайте так же:
Растворы цементные марка 150 марка по подвижности

Ускорение твердения

Для увеличения скорости твердения, применяют:

  1. снижение водоцементного соотношения (повышение жесткости смеси, что снижает удобоукладываемость);
  2. тепловлажностную обработку;
  3. добавление в бетон специальных добавок-ускорителей.

Как ускорить твердение бетона

Замедление твердения

Когда может понадобиться замедление отвердевания:

  1. при изготовлении высокомарочных смесей, которые застывают очень быстро из-за повышенного содержания вяжущего компонента;
  2. при необходимости транспортировки готовой смеси на дальние расстояния;
  3. при заливке бетона в несколько этапов.

В этих случаях применяют специальные добавки, которые замедляют реакцию гидратации и гидролиза минералов клинкера, откладывая процесс схватывания на несколько часов.

Можно ли и как использовать цемент, который затвердел в мешке

Наряду с глупыми советами встречаются рекомендации заслуживающие внимания. Нижеприведенные способы помогут использовать с пользой окаменевший песчаник в большом количестве.

  • Строительство. Используется в постройках не подверженных действию больших нагрузок: в качестве заполнителя оснований, при монтаже забора, курятника, дровника и пр. Для этого слежавшийся монолит дробят на куски размером около 50 мм.
  • Ремонт покрытий, декорирование садовых дорожек. Цементный камень используют вместе с щебнем, строительным мусором в соотношении 1:3. На 1 часть битого балласта приходится 3 части добавки. Полученный состав незаменим при устройстве отмостки, дорожек в саду и др.
  • Создание основы под плитку. При заливке пола, для «подушки» под отделку применяют мелкие и средние фракции; в установке бордюрных камней, скамеек.
  • Ремонт придомовой территории. Чтобы использовать окаменевший материал без остатка достаточно раздробить его на камни, перевезти тачкой и засыпать ямы и выбоины, которых полно на дороге перед домом.

Как узнать точное время затвердевания бетона?

Сроки полного отвердевания разных видов бетона варьируются в зависимости от состава. Примерное представление о продолжительности процессов твердения бетона с использованием марок цемента М200, М250, М300, М400, М500 и так далее, можно узнать из статей, графиков, специальных таблиц.

Таблица 2. Время застывания бетона на портландцементе М400, М500

Для того чтобы точно узнать, сколько времени понадобится, чтобы получить расчетную прочность бетона, используются два метода:

  1. Узнать точные данные в лаборатории производителя.
  2. Вызвать технолога на объект для взятия проб. Для образцов используют кубические отливки со стороной 10 см, которые должны твердеть в тех же условиях, что и основная конструкция. Затем проводятся испытания разрушающими методами, которые точно показывают марочную прочность бетона и сроки его схватывания и полного отвердевания.

Время застывания бетона в опалубке

Своевременная распалубка бетона повышает оборачиваемость оборудования для опалубки и оптимизирует сроки строительства.

Распалубочной прочностью называют прочность, достаточную, чтобы снять опалубку и дать стартовую нагрузку. Обычно она составляет 70% от расчетной прочности (или другую величину, оговоренную в проектной документации).

Для не ответственных конструкций, например, стяжек, отмостки и других конструкций, работающих только на сжатие, допустима распалубка на 3–5-й день, по достижении прочности 30–40% от расчетной.

Современные бетоны с добавками могут достигать распалубочной прочности за 1–2 дня.

Уход за бетоном после заливки

Уход за бетоном имеет цель создать такие условия твердения, при соблюдении которых бетон будет набирать заданную прочность с нужной скоростью, а его структура будет максимально качественной.

Для оптимизации процесса отвердевания решающее значение имеет обеспечение правильной температуры и высокой влажности.

После укладки бетонной смеси и ее уплотнения (если таковое производилось), проводятся специальные мероприятия по уходу за бетоном.

Защита от испарения влаги

Отвердевание бетона внешне похоже на высыхание, но на самом деле, это реакция, которая происходит с обязательным участием воды. При застывании бетона на воздухе, его поверхность быстро высыхает, и реакция гидратации прекращается. Образуется разность давления в толще бетона и на его поверхности, что приводит к появлению дефектов в виде трещин.

Для защиты от пересыхания поверхность бетона закрывают водонепроницаемыми материалами, такими, как пленка, брезент, в некоторых случаях, слой опилок или песка, который постоянно смачивают.

Обеспечение равномерной температуры

При заливке массивных конструкций (например, плит фундамента) возникает еще одна проблема – температурный градиент.

Реакции гидратации происходят с выделением тепла. В массивных конструкциях возникает разница между температурами в толще бетона и на его поверхности. В толще слоя бетона температура может достигать 50–80°С. Если разница с температурой поверхности превышает 20–30°С, может произойти разрыв структуры бетона, что влечет интенсивное образование трещин на внешней стороне конструкции и потерю прочности.

Чтобы предотвратить градиент температур, необходимо снизить температуру всей конструкции. Для этого, после укрытия паро- или водонепроницаемым материалом, на поверхность бетона льют холодную воду, меняя ее после нагрева.

Снижение температуры не должно быть резким. Допускается снижать ее на 1–2° С в час, а для некоторых типов конструкций не более, чем на 12–13°С в сутки (эта информация указывается в регламенте).

Читайте так же:
Фильтр промышленный для цемента

Для проведения этих мероприятий необходимо знать точную температуру в толще бетона; по регламенту, ее необходимо измерять в первые сутки каждые 1–2 часа, а затем 1 раз в 8 часов и фиксировать полученные данные в специальных журналах. Для того, чтобы иметь возможность измерять температуру, при заливке в бетон вставляют трубочки на расстоянии не более 8 м друг от друга.

Защита от охлаждения

В зимнее время возникает задача сохранить тепло, поскольку при температуре ниже 0° С завердевание прекращается. Главной задачей становится обеспечение твердения до приобретения бетоном критической прочности.

Критической прочностью называют прочность в зимнее время, по достижении которой замерзание воды в порах бетона уже не носит разрушающий характер (обычно 30-50% от расчетной прочности).

Используются разные методы сохранения тепла:

  1. Прогрев электродами или инфракрасным излучением (последнее технологически сложно).
  2. Установка тепляков с прогретым воздухом.
  3. Использование сохраненного тепла реакции гидратации («тепловой осмос» или «метод термоса), для которого поверхность бетона укрывают теплоизоляционными материалами, такими, как минераловатные плиты, рулонные материалы в несколько слоев.
  4. Противоморозные добавки. Если раньше использовался хлорид кальция, сейчас его применение, как и других хлоридов, не рекомендуется из-за агрессивного воздействия на арматуру. Чаще используют формиат кальция или натрия и другие соли-электролиты, снижающие температуру замерзания воды либо готовые комплексные добавки, обладающие не только противоморозным, но и пластифицирующим действием.
  5. Применение добавок-ускорителей совместно с тепловой обработкой. В этом случае добавки нужны для быстрого достижения критической прочности, затем, при помощи согревающих или сохраняющих тепло мероприятий, обеспечивается оптимальная температура до достижения расчетной прочности бетона.

Надо ли поливать бетон водой?

Поскольку водная среда оптимальна для завердевания, полив бетона водой целесообразен, но только в летнее время, особенно, в жаркую погоду. Интенсивное обеспечение влажности позволяет снизить вероятность появления дефектов.

Набор прочности бетона – сложный химический процесс, который зависит от множества факторов. Для оптимизации строительных работ используются методы тепловлажностной обработки бетона. Современное решение – использование специальных добавок, регулирующих скорость отвердевания.

Гнанулированная добавка для регулирования сроков схватывания цемента

Патент 562529

Гнанулированная добавка для регулирования сроков схватывания цемента

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ (61) Дополнительное к авт. свид-ву— (22) Заявлено 22.10.75 (21) 2182851/33 с присоединением заявки №вЂ” (23) Приоритет— (43) Опубликовано 25.06.77. Бюллетень ¹ 23 (45) Дата опубликования описания 17.08.77 (51)м Кл С 04 В 7/35

Совета Министров СССР ло делам изобретений и открытий (53) УДК 666.913.22 (088.8) (72) Авторы изобретения

В. К. Новосадов, А. В. Киселев, Т. Я. Гальперина, Г. Г. Дреганов, В. Е. Агеенко, Б. H. Богомолов и В. Ф. Суханов

Сибирский научно-исследовательский и проектный институт цементной промышленности (71) Заявитель (54) ГРАНУЛИРОВАННАЯ ДОБАВКА

ДЛЯ РЕГУЛИРОВАНИЯ СРОКОВ

Изобретение относится к составам добавок, применяемых для регулирования сроков схватывания цемента.

Известно применение для регулирования сроков схватывания цемента двуводного гипса (I). Недостатком известной добавки является возможность ложного схватывания цемента.

Известна также гранулированная добавка для регулиро|вания сроков схватьгвания цемента, включающая гипс д вуводный, крем.незем аморфный и соединения бора (2). Эта добавка является наиболее близкой к изобретению по технической сущности и достигаемому результату. Недостатком ее является невысокая прочность гранул.

Цель изобретения — повышение прочности гранул и предотвращение ложного схватывания цемента.

Это достигается тем, что добавка дополнительно содержит ангидрит нерастворимый при,следующем соотношении компонентов, масс. %,:

Гипс двуводный 30 — 60

Кремнезем аморфный 20 — 30

Соединения бора 0,1 — 2,5

Ангидрит нерастворимый 10 — 40

Введение в состав добавки нерастворимого .авгидрита дает следующие преимущества.

Нерастворимый ангидрит увеличивает содержание CaSO4 в добавке, так как не содержит воды; нерастворимый ангидрит уменьшает склонность цемента к ложному схватыванию, так как он не способен дегпдратиро5 ваться до полугндрата как двуводный гипс; нерастворимый ангидрит за счет частичной гидратации способствует увеличению прочности гранул при их сушке.

Гранулированную добавку получают, »апример путем грануляции боргипсового шлама, являющегося отходом переработки датолитовой руды на борную кислоту при температурах 50 — 70 С. Грануляцию осуществляют в сушильно-,прануляционном барабане. Основной размер гранул составляет 5 — 20 мат. Точечная прочность гранул диаметром 10 мм на раздавливание составляет около 3 кг при влажности 6 — 13%.

Пример. Испытывали гранулированную добавку состава: гипс двуводный 50%, кремнезем аморфный 20,27%, соединения бора

0,73%, ангидрит нерастворимый 23%. При испытаниях было установлено, что гранулпрованная добавка не вызывает ухудшения процесса помола цемента. Добавка технологична, не требует дробления, хорошо выгружается и транспортируется, не смерзается, гранулы из бор гипса обладают достаточной механической прочностью. При дозировке

Читайте так же:
Растворы цементные легкие технические характеристики

ЗО: боргипса (по ЯОз) — 1,92% — начало схва562529

Редактор А. Морозова

1,орректор В. Гутман

Текред H. Сгиеганина

Заказ 495/1182 Изд. ¹ 64 Тираж 778 Подписное

ЦНИИПИ Государственного комитета Совета Министров СССР по делам изобретений и открытий

Москва, )К-35, Раушская наб., д. 4, 5

Тип. Харьк. фил. пред. «Патент» тывания наступает через 1 час 00 мин, т. е. укладывается в стандартные сроки.

Гранулированная добавка может быть использована на цементных заводах как регулятор сроков схватывания цемента.

Гранулированная добавка для регулирования сроков схваты|вания цемента, включающая двуводный гипс, кремнезем аморфный и соединения бора, от л и ч ающ а яся тем, что, с целью повышения прочности гранул и предотвращения ложного схватывания цемента, она дополнительно содержит нерастворимый ангидрит при следующем соотношении компонентов, масс. %:

Гипс двуводный 30 — 60

Кремнезем аморфный 20 — 30

Соединения бора О,1 — 2,5

Ангидрит нерастворимый 10 — 40

Источники информации, принятые во вни10 мание при экспертизе:

1. Лурье Ю. С. «Портландцемент», Л.— М., Госстройиздат, 1963, с, 7.

Скорость схватывания цемента.

По стандарту начало схватывания цемента должно наступать не ранее 45 мин, а конец — не позднее 12 ч от начала затворения. Как слишком быстрое, так и чересчур медленное схватывание существенный недостаток цемента. Если цемент слишком быстро схватывается, то он превращается в камневидное тело прежде чем его успевают употребить в дело. При работе с такими цементами необходимо быстро их транспортировать и укладывать после затворения водой, что очень трудно. Использование же медленно схватывающихся цементов часто сильно замедляет темпы строительства.

Скорость схватывания цемента зависит от ряда факторов. Большое значение имеет его минералогический состав, в особенности содержание трехкальциевого алюмината, который ускоряет схватывание. Степень обжига цементного клинкера также влияет на скорость схватывания. Сильно обожженный цемент схватывается медленнее, а слабо обожженный — быстрее, чем цемент нормального обжига. С увеличением тонкости помола ускоряется схватывание цемента вследствие большей удельной поверхности цементного порошка. Повышенное количество воды при затворении цемента замедляет его схватывание, а уменьшенное — ускоряет. С повышением температуры окружающей среды процесс схватывания ускоряется, а с понижением — замедляется. Магазинирование клинкера и силосование цемента замедляют схватывание, так как при хранении цемент реагирует с влагой и углекислой воздуха, в результате чего зерна цемента покрываются оболочкой, состоящей из углекислого кальция и других новообразований, а это затрудняет взаимодействие цемента с водой при затворении.

Для замедления сроков схватывания цемента к клинкеру при помоле добавляют гипс, однако количество его должно быть таким, чтобы содержание SО3 в цементе не превышало 3,5%, что в пересчете на CaS04*2Н2О составляет -7,53%, а на CaS04*О,5Н2О — 6,34%. Следует всегда учитывать, что сам клинкер содержит некоторое количество SО3. Величина оптимальной дозировки гипса зависит от минералогического состава клинкера, тонкости помола и некоторых других факторов и в ряде случаев приближается к верхнему пределу допускаемого стандартом, а в отдельных случаях, при большом содержании С3А и весьма тонком помоле, может даже превышать его. Объясняется это тем, что гипс добавляют цементу в первую очередь для того, чтобы, вступая во взаимодействие с трехкальциевым алюминатом, образовывать в начальный период твердения (до получения жесткой недеформирующейся структуры твердеющего цементного камня) гидросульфоалюминат, что регулирует (замедляет) сроки схватывания цемента и улучшает ряд его свойств. Наряду с этим следует учитывать, что при твердении цемента, содержащиеся в нем алюмоферриты хотя и медленнее, но также вступают во взаимодействие с гипсом, связывая определенное его количество в комплексные новообразования. Количество гипса, вступающего в реакцию с алюминатами и алюмоферритами кальция, зависит от тонкости помола цемента, температуры его при выходе из мельницы, режима охлаждения и связанного с этим содержания в клинкере стекловидной фазы степени присадки золы и ее состава, а также от ряда других производственных факторов. Поэтому для каждого завода оптимальная дозировка гипса будет иной.

Большой избыток гипса может привести к появлению внутренних напряжений, иногда вплоть до образования трещин вследствие запоздалого появления гидросульфоалюмината кальция в уже затвердевшем цементном камне за счет твердых исходных компонентов. При недостаточном количестве гипса не удается использовать все заложенные в цементе возможности для быстрого твердения; такой цемент чересчур быстро схватывается. Следует отметить, что добавка гипса также благоприятно влияет на процесс твердения содержащихся в цементе силикатов кальция. Поэтому ограничено и минимальное содержание SО3 не менее 1,5%.

Читайте так же:
Опилки цемент блоки характеристики

Серьезное значение имеет нагревание цемента при помоле, так как вследствие развивающейся при этом температуры гипс в той или иной степени переходит из двуводного в полуводный, т. е. в модификацию, значительно более растворимую в воде, что изменяет условия твердения цемента.

Дозировку добавляемого гипса целесообразно определять исходя из того его количества, которое связывается в первые сроки твердения, когда реакции происходят за счет растворенных в воде компонентов. За оптимальную дозировку гипса, в случае твердения при обычных температурах, можно принять то наибольшее его количество, которое практически может быть химически связано в твердеющем цементе в течение первых 24 ч после затворения цемента водой.

Добавками, ускоряющими сроки схватывания, являются: хлористый кальций, соляная кислота, глиноземистый цемент, растворимое стекло, углекислый натрий (сода) и ряд других. К замедлителям схватывания наряду с гипсом относятся слабый раствор серной кислоты, сернокислое окисное железо и ряд других.

Добавки для регулирования сроков схватывания цемента

Улучшение качества технологических приемов и физико-технических свойств цементных материалов, в частности, тяжелого бетона с позиций современных представлений физико-химии поврехностных явлений и теории конгломератов неразрывно связано с применением многокомпонентных модификаторов (добавок).

Интерес представляют модификаторы, содержащие гидрофобизирующие ингредиенты, которые особенно в составе многокомпонентных добавок обеспечивают регулирование конструктивных и деструктивных процессов в цементных материалах во времени (в период эксплуатации различных бетонных объектов, зданий и сооружений) [4].

В настоящей работе сделан упор на конструировании составов модификаторов, которые обладали бы пролонгированным действием в направлении регулирования процессов формирования стабильной макро- и микроструктуры, массообмена, самозалечивания цементного камня, эксплуатируемого в тяжелых условиях.

Наиболее существенной особенностью цементных материалов является способность их разжижжаться в присутствии добавок-пластификаторов и под влиянием механических воздействий, изменять свои свойства во времени по мере превращения в искусственный камень конгломератного строения – бетон [2].

Структурированные водные оболочки придают смесям связность и облегчают скольжение частиц относительно друг друга. Применение комплексных модификаторов, в состав которых входят пластификаторы гидрофобно-пластифицирующего действия, соли неорганических кислот и др., вносит свою специфику на реологию цементных паст [3].

Накоплен существенный практический опыт решения таких задач, в том числе с использованием комплексных органоминеральных модификаторов, содержащих в своем составе микрокремнезем, золу-унос, суперпластификатор и регулятор твердения в разных соотношениях.

Исходя из приведенных пошаговых целевых индикаторов качества бетона нами было принято решение продолжить исследования основных физико-технических свойств цементных паст, цементного камня, бетонных смесей и бетона, приготовленного с использованием органоминерального модификатора типа ОМД-М.

Для приготовления высокоэффективных комплексных гидрофобизирующих добавок-модификаторов, улучшающих свойства цементных материалов, в качестве ингредиентов применяли различные органические и неорганические соединения. Выбор ингредиентов осуществлялся на основе изу­чения опыта работы передовых предприятий стран ближнего и дальнего зарубежья с учетом требований к добавкам-модификаторам, регламентируемым действующими нормативными документами, в частности, ГОСТом 24211–2003 «Добавки для бетонов и строительных растворов. Общие технические требования».

В качестве гидрофобизирующего ингредиента применяли кубовые остатки синтетических жирных кислот (КОСЖК), которые являются массовыми и дешевыми промышленными отходами. КОСЖК представляют собой мазеобразный продукт нефтехимического синтеза, образующийся при дистилляции синтетических жирных кислот (СЖК), которые получаются при окислении парафина. КОСЖК содержат более 80 % жирных кислот, высокомолекулярные спирты и дифункциональные соединения.

В качестве альтернативы КОСЖК применялись синтетические жирные кислоты (СЖК), получаемые окислением парафина, удовлетворяющие требованиям ГОСТа 23239–89 «Кислоты жирные синтетические».

В наших опытах полученные на основе СЖК и КОСЖК эмульсии по глобулярному составу относятся к тонкодисперсным (рис. 1), причем прямая эмульсия на основе СЖК получена более высокого качества. Такое заключение подтверждается при ее совмещении с ультрадисперсным микрокремнеземом. Относительной характеристикой лучшего качества прямой эмульсии на основе СЖК можно считать ее быструю и легкую смываемость с листка бумаги и более высокую прочность цементного камня.

а б в
Рис. 1. Глобулярный состав прямых водных эмульсий:
а — эмульсия, полученная в обычном диспергаторе; б — эмульсия на основе СЖК, полученная в РПА;
в — то же, на основе КОСЖК

Из анализа результатов выполненных ранее работ нами сделан вывод о необходимости сосредоточиться в дальнейшей работе на исследовании влияния на качество цементных материалов гидрофобизирующих органоминеральных модификаторов марок ОМД-МС (с добакой СЖК) и ОМД-МК (с добавкой КОСЖК).

В этой связи нами были проведены опыты по определению влияния дозировок модификаторов марок ОМД-МС и ОМД-МК на изменение нормальной густоты цементного теста в сравнении с достаточно изученным суперпластификатором С-3 и известной гидрофобизирующей добавкой ГПД.

В опытах использованы два вида цемента, являющихся основными цементами массового производства в Казахстане, которые отличаются химико-минералогическим и вещественным составами.

Результаты опытов приведены на рис. 2, из которого видно, что с увеличением содержания модификаторов в цементном тесте его нормальная густота вначале резко снижается, а затем стабилизируется, то есть дальнейшее увеличение количества добавки практически не отражается на изменении изучаемой характеристики цементного теста. Оба цемента, несмотря на различие в минералогическом составе, восприимчивы к испытуемым добавкам и на их действие реагируют почти одинаково.

Читайте так же:
Лугато очиститель от цемента

Если увязать полученные данные с данными работ В.Г. Батракова и М.И. Хигеровича, можно сделать вывод, что оптимальная дозировка ОМД-МС и ОМД-МК – 12…13 % от массы цемента, С-3 и ГПД – соответственно 0,4 и 0,3 % [1,5].

При оптимальных дозировках модификаторов ОМД-МС и ОМД-МК нормальная густота цементных паст составила 22 и 24 % (цементной пасты без модификаторов – 26 %).

Рис. 2. Изменение нормальной густоты цементного теста в зависимости от вида и дозировки модификатора:а – карагандинский портландцемент; б – усть-каменогорский портландцемент;1 – 0,4 % С-3 плюс 4 % ТСН (тиосульфат натрия); 2 – 0,3 % ГПД плюс 3 % ТСН; 3 –12 % ОМД-МС; 4 – 12 % ОМД-МК

Результаты показывают, что предпочтение следует отдавать модификатору ОМД-МС, обеспечивающему лучшую реологию цементных паст благодаря умеренному структурирующему действию на цементные системы синтетических жирных кислот (СЖК) в сравнении с действием кубовых остатков синтетических жирных кислот (КОСЖК).

Данный вывод согласуется с теоретическими воззрениями М.И. Хигеровича о том, что с увеличением молекулярной массы ПАВ (поверхностно-активных веществ) возрастает (вероятность создания более «жесткого молекулярного «ворса», который и определяет в спокойном состоянии псевдожесткость цементных паст, молекулярная масса КОСЖК больше молекулярной массы СЖК). В этой связи можно сделать вывод, что некоторое снижение воды затворения (на 25…27 %) для получения теста нормальной густоты также обеспечивается спецификой действия гидрофобно-пластифицирующей добавки ОМД-МС, имеющей в своем составе гидрофобизирующий ингредиент с меньшей молекулярной массой, чем КОСЖК.

Далее нами были проведены опыты по влиянию на сроки схватывания цемента модификаторов ОМД-МС и ГПД (таблица).

Нормальная густота и сроки схватывания портландцементов различного минералогического состава с гидрофобизирующими модификаторами

Влияние минеральных добавок на свойства портландцемента

Рубрика: Химия

Дата публикации: 27.01.2020 2020-01-27

Статья просмотрена: 416 раз

Библиографическое описание:

Сатыбалдиев, А. К. Влияние минеральных добавок на свойства портландцемента / А. К. Сатыбалдиев, Д. С. Ивчин. — Текст : непосредственный // Молодой ученый. — 2020. — № 4 (294). — С. 11-14. — URL: https://moluch.ru/archive/294/66751/ (дата обращения: 13.10.2021).

В статье авторы рассматривают влияние минеральных добавок, а именно метокаолина и известняка, на свойства портландцемента.

Ключевые слова: портландцемент, минеральная добавка, метокаолин, известняк.

Цементные бетоны являются самым распространенным материалом в современном строительстве. Они занимают лидирующую позицию на рынке строительных материалов, и их стоимость напрямую зависит от стоимости компонентов, самым дорогим из которых является цемент.

Производство цемента существенно выросло в течение последних десятилетий и на сегодняшний день является третьим по величине источником выбросов углекислого газа в мире. Снижение удельного количества выбросов парниковых газов и удешевление конечной продукции — это приоритетные задачи для технологов цементной промышленности.

Одним из путей выполнения этих задач является уменьшение содержания клинкера в цементе путем использования минеральных добавок. Это позволяет как уменьшить количество выбросов парниковых газов в атмосферу, так и снизить конечную стоимость цемента для потребителей.

Минеральная добавка — это дисперсный неорганический материал природного или техногенного происхождения, вводимый в бетонную или растворную смесь в процессе их приготовления в целях направленного регулирования их технологических свойств и/или строительно-технических свойств бетонов и/или придания им новых свойств. Минеральные добавки могут быть как техногенного, так и природного происхождения.

Основными эксплуатационными свойствами цемента и изделий на его основе являются: водопотребность, тонкость помола, тепловыделение, прочность, пористость и морозостойкость.

Для регулирования и улучшения свойств цементных бетонов, а также удешевления, используют различные минеральные добавки.

Одним из минеральных наполнителей, обладающих высокой реакционной способностью, является метакаолин — продукт дегидратации обогащенных природных каолинов. Известно, что метакаолин рекомендуется как добавка для получения высокопрочных бетонов, улучшающая структуру цементного камня и позволяющая получить повышенную прочность, водонепроницаемость и морозостойкость бетона. Несмотря на то, что эффективность метакаолина как минеральной добавки с высокой активностью подтверждается рядом исследователей, использование его в производстве бетона остается ограниченным. Причиной такой ситуации является недостаточная информированность производителей бетона об основных преимуществах этой добавки, а также изученность технологических условий эффективного ее применения.

Дляпроведенияработыбыл использован портландцемент ЦЕМ Ӏ 42,5 Н (далее ЦЕМ1) производства ООО «ХайдельбергЦемент Рус».

Его химический состав цементов представлен в таблице 1.

Химический состав цемента

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector