Alsatelecom.ru

Стройматериалы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Применения; Производство строительных материалов

Применения — Производство строительных материалов

Система автоматизированного управления печью обжига кирпича-сырца

А. С. РЫКОВАНОВ, ведущий инженер-программист, к. т. н.

А. Н. КОВАЛЕНКО, начальник отдела программирования промышленных систем, ООО «Симплекс», г. Красноярск

С каждым годом всё больше городских жителей стремится устроить свою жизнь вдали от суеты и шума мегаполиса. Заветная мечта многих горожан: загородный образ жизни, собственный дом. Реальное воплощение этих желаний — строительство дома из кирпича — дома на века. Кирпичный дом — это свидетельство материального достатка и хорошего вкуса. Именно кирпич позволяет воплотить в жизнь любые архитектурные замыслы, создать неповторимую индивидуальную планировку, уют и домашнее тепло. Кирпич — основа строительных работ, гарантия надёжности и долговечности.

Сегодня строительные материалы имеют огромный потребительский спрос. Цены непрерывно растут и на готовые квартиры, и на строительные материалы: железобетонные конструкции, цемент, кирпич. Высокий спрос способствует динамичному развитию заводов по производству строительных материалов. Одним из таких объектов по выпуску стройматериалов является кирпичный завод «Песчанка», который находится на окраине Красноярска и успешно работает уже четыре года. Объём выпуска составляет два миллиона изделий в месяц. Потребителями продукции являются строительные организации Красноярска и его окрестностей. На заводе выпускается кирпич марок М100 и М125, реже М150. В сопроводительном паспорте число после буквы «М» показывает, какую нагрузку на 1 см² может выдержать кирпич. Если, например, вы видите М100, это означает, что такой кирпич выдерживает нагрузку 100 кг на 1 см². При строительстве многоэтажных домов обычно используется кирпич М150, в коттеджах — М100. Параметры прочности кирпича могут находиться в пределах 75-300 кг/см².

Производство строительного керамического кирпича — это непрерывный и энергоёмкий процесс. Заводская печь для обжига кирпича-сырца выполнена в форме длинного тоннеля, разбитого на ячейки, со съёмным верхом (сводом ячейки). Кирпич закладывается в неё подъёмным краном, и затем ячейки накрывают сводом. В печи вмонтирован трубопровод для подачи горючей смеси — природного газа с воздухом, а также встроены термопары для измерения температуры (рис. 1).

Рис. 1. Ячейка печи

Технология обжига включает в себя измерение температуры и регулировку положения клапанов подачи горючей смеси. Температура в печи поддерживается системой управления, состоящей из компьютера, сетевого адаптера АС3 и двадцати шести восьмиканальных измерителей-регуляторов ОВЕН ТРМ138, в соответствии с заданным технологическим графиком (рис. 2). Терморегуляторы обеспечивают работу клапанов подачи газа в каждой ячейке печи, поддерживают заданную температуру и выполняют сбор данных с датчиков температуры ТСМ-50М. В зависимости от текущего значения температуры в камере клапан подачи газа может находиться в двух положениях (ON/OFF). ОВЕН ТРМ138 был выбран для обслуживания печи благодаря удобству обслуживания и возможности передачи данных на большие расстояния.

Рис. 2. Структурная схема системы управления

Работа SCADA-системы «Expert»

Пульт управления технологическим процессом создан на базе персонального компьютера. Оператор управляет процессом сушки кирпича-сырца с помощью SCADA-системы «Expert», структурная схема которой представлена на рис. 2. Работа системы возможна в ручном или автоматическом режиме с помощью задания алгоритмов и параметров технологического процесса.

SCADA-система «Expert» связывается по сети с приборами через OPC-сервер ОВЕН. Система позволяет вести учёт всех параметров техпроцесса. Для удобства анализа в программе предусмотрена графическая и табличная формы вывода параметров температуры для каждой ячейки печи. По результатам обжига строятся графики распределения температуры в любой момент времени (рис. 3). В программе предусмотрена возможность восстановления параметров технологического процесса после аварийного отключения питания, которое, к сожалению, на заводе происходит достаточно часто.

Рис. 3. График изменения температуры ячейки во времени

SCADA-система позволяет вести цветовое отображение текущего состояния температуры для каждой ячейки печи с отображением зон разогрева и охлаждения кирпича. В зонах загрузки/ разгрузки термопары отключены от приборов. Текущая температура ячеек обозначается соответствующим цветом (рис. 4). Белый — холодный неуправляемый нагрев (до 200 °C). Жёлтый — разогрев (от 200 до 900 °C). Оранжевый — нормальный обжиг (950 °C). Красный — перегрев (более 1000 °C).

Рис. 4. Схема обжиговой печи и процесса обжига

Читайте так же:
Плотность кирпича млс 62

До внедрения автоматизированных систем управления обслуживающий персонал вынужден был вручную открывать клапан подачи газа и засекать время обжига. При таком режиме работы частым явлением был брак: пережжённый или недожжённый кирпич. Такой кирпич долго не протянет, будет разрушаться и от морозов, и от влаги. Главный показатель качества для покупателя — звук и цвет кирпича. При ударе он должен звенеть, его сердцевина должна быть более насыщенного цвета, чем края. В соответствии с ГОСТом на поверхности качественного кирпича не должно быть трещин, отколов, пятен, выцветов, отбитых и притупленных углов.

Другим серьёзным минусом ручного управления был повышенный расход газа, что приводило к удорожанию продукции.

Заключение

Система управления внедрена на кирпичном заводе «Песчанка» в июле 2006 года и работает без сбоев в круглосуточном режиме. Выбранные современные технические средства и программное обеспечение позволяют точно выдерживать технологический режим по времени и по температуре, тем самым значительно снижая трудоёмкость производственных процессов. Это обеспечивает гарантированное качество продукции, снижает её себестоимость и исключает влияние человеческого фактора. На заводе сократился расход газа более чем на 15% за счёт точной выдержки временных интервалов. Управление обжигом с помощью системы управления стало централизованным. Ведение статистики всех технологических параметров позволяет проводить анализ и принимать решения для последующей оптимизации производственного процесса.

Статья опубликована в журнале «Автоматизация и производство» №3 2007

3.Понятие о технологии кирпича и других керамических материалов.

Глина – основной, но, как правило, не единственный сырьевой материал в технологии керамики. Выше уже упоминались отощающие и обогащающие добавки, способствующие приведению глины к требуемому числу пластичности. Кроме того, применяют выгорающие добавки, способствующие увеличению пористости керамики, например, древесные опилки, угольную пыль. Напомним, что грубая керамика имеет значительную пористость, доходящую до 18-20 %. Поризация требуется для получения легких и теплоизолирующих материалов. При этом, конечно, уменьшается прочность. Поэтому, например, легкий пористый кирпич применяют как стеновой материал в зданиях малой этажности (не более 3-4 этажей).

Для наружного слоя облицовочных керамических плиток, а также для некоторых видов лицевого кирпича применяют глазури и ангобы.

Глазурью называют стекловидное покрытие на поверхности керамического изделия толщиной 0,1. 0,3 мм, закрепленное обжигом. Состав глазури сходен с составом стекол (о стеклах дальше), глазурную смесь – фритту – наносят на поверхность керамики. При обжиге происходит расплавление и растекание состава по поверхности. Получается блестящее прозрачное или цветное непрозрачное покрытие (в зависимости от состава фритты).

Ангобом называют керамическую краску, состоящую из глины, белой или окрашенной оксидами металлов. Она, как и глазурь, закрепляется на поверхности керамического изделия обжигом. Толщина слоя ангоба также 0,1. 0,3 мм. Ангобированная поверхность обычно матовая, в отличие от глазурованной.

Поверхность керамического изделия может быть также рельефной или гладкой, иметь рисунок (рисунки наносятся по различным технологиям) или быть одноцветной.

Поверхность керамического черепка, имеющая естественный цвет обожженной глины (без глазури или ангоба) называется терракотовой.

Для таких материалов плотной керамики, как фаянс, полуфарфор и фарфор, в состав сырья входят также кварц и полевой шпат в довольно значительных количествах, так что их нельзя назвать добавками. Содержание кварца в фаянсе до 40 %, полевого шпата – до 15 %. В составе санитарно-технического фарфора кварца и полевого шпата по 20-30 % каждого.

В составе сырья для огнеупорных керамических материалов может преобладать тугоплавкая глина (в материале, называемом шамот) или глина может быть лишь связующим для кремнезема или глинозема.

Основные этапы технологии керамических изделий. Виды формования.

Технология производства керамических изделий включает в себя три основных группы операций: 1) подготовка глиномассы; 2) формование изделия; 3) закрепление формы отформованного изделия обжигом (с предварительным подсушиванием или без него). Основные различия в вариантах технологии зависят от способа проведения формования. Существует три способа формования керамических изделий из глиномассы (т.е. из смеси глины с добавками и водой): а) пластическое формование, б) полусухое прессование, в) литьевой способ.

При пластическом формовании влажность глиномассы составляет около 20 %. Глиномасса, находящаяся в пластическом состоянии, выдавливается через отверстие экструдера (ленточного пресса) в виде непрерывной ленты, бруса или трубы (в зависимости от формы отверстия) и далее разрезается на отдельные изделия: брус – на кирпичи, лента – на плитки, труба – на отрезки определенной длины.

Читайте так же:
Кирпич спп для чего

При полусухом прессовании из глиномассы с влажностью 8… 10 % прессуют отдельные изделия на обычном гидравлическом прессе.

При литьевом способе влажность глиномассы около 40 % – превышает влажность текучести – поэтому формование заключается в разливке глиномассы по формам, в которых она и обжигается (избыток воды уходит в поры формы, изготовляемой из формовочного гипса).

Различие в способах формования влечет за собой некоторые различия в проведении остальных операций производственного процесса. Рассмотрим более подробно технологический процесс производства кирпича.

Технология производства кирпича

На рис. 2 приведена блок-схема технологического процесса производства кирпича способом пластического формования

Рис.2. Блок схема технологического процесса производства кирпича способом пластического формования

На рис.3 представлена развернутая схема операций подготовки глиномассы и пластического формования кирпича.

Рис.3. Технологическая схема производства кирпича способом пластического формования.

1 – ящичный подаватель, 2 – транспортер, 3 – дробление глины на дезинтеграторных вальцах, 4 – помол глины на бегунах, 5 – транспортер, 6 – формование кирпича на ленточном прессе, 7 – резка кирпича-сырца на автомате.

Песок, добавки и воду, в случае недостаточной естественной влажности глины, можно добавлять на стадии помола на бегунах (как отмечено в блок-схеме).

Ленточный пресс, или экструдер (рис.4), представляет собой машину, по принципу действия аналогичную мясорубке, но без ножей.

Глина поступает сверху в глиномялку 8, продавливается через решетку 7 – в вакуум-камеру 6. В вакуум-камере создается разрежение, в результате часть воды испаряется, что способствует в дальнейшем упрочнению кирпича за счет уменьшения капиллярных пор, остающихся при испарении избыточной воды. Далее шнековый вал 1 уплотняет глину в прессовой головке 2 и через мундштук 3 с отверстием в идее прямоугольника размером 250 х 120 мм выдавливается глиняный брус 4, который в дальнейшем разрезается на отдельные кирпичи. Полученный необожженный кирпич называется «кирпич-сырец».

Кирпич-сырец укладывается на вагонетки и поступает на сушку в туннельную сушилку, где навстречу движущимся вагонеткам с кирпичом идут отходящие из печи обжига горячие газы, высушивающие кирпич.

Рис.4. Ленточный вакуумный пресс. 1 – шнековый вал, 2 – Прессовая головка, 3 – мундштук, 4 – глиняный брус, 5 – крыльчатка, 6 – вакуум-камера, 7 – решетка, 8 — глиномялка.

Обжиг кирпича на современных заводах проводится в туннельных печах, по принципу действия сходных с туннельными сушилками, но в печи, в отличие от сушилки, на стенках средней части туннеля располагаются горелки, обжигающие своим пламенем кирпич, проезжающий мимо них на вагонетках. Температура обжига обычного стенового кирпича около 1000°С. Обожженный кирпич несколько остывает к концу туннеля печи, но принимает температуру окружающего воздуха уже на складе готовой продукции.

Способ производства кирпича методом полусухого прессования отличается, прежде всего, подготовкой глины. Глину сушат в барабанных сушилках, измельчают в сухом виде на дезинтеграторах и увлажняют водой или паром до 8-10 % влажности. Далее прессуют отдельные кирпичи на гидравлических прессах и подают в вагонетках на обжиг. Стадия сушки сырца в этом методе отсутствует.

Один и тот же материал, полученный разными способами, имеет различие в свойствах. Так, например, кирпич полусухого прессования отличается от кирпича, полученного способом пластического формования (при одном и том же сырье), меньшим сопротивлением изгибу. Изучение технологии в нашем курсе как раз имеет целью выяснение влияния способа получения на свойства материалов.

На свойства кирпича и других керамических изделий влияет не только состав глины и глиномассы, не только способ формования, но и температура обжига. Если для стенового кирпича обычная температура обжига 900…1000°С, то дорожный кирпич, плитки для пола, огнеупорные материалы обжигаются при более высокой температуре – до 1400°С. Материалы, обожженные при разных температурах, имеют разную структуру.

4. Состав структура и свойства керамики

Из раздела о превращениях глины при обжиге (см. выше) ясен химический состав строительной керамики: сплав из силикатов алюминия и кремнезема. По фазовому составу в керамике можно выделить: кристаллическую фазу, аморфную фазу и поры. Аморфная фаза имеет тот же химический состав, что и кристаллическая, она образовалась при оплавлении кристаллов и играет роль связующего в керамическом материале. Содержание газовой фазы – пор зависит от степени спекания (температуры обжига) и наличия в составе глиномассы веществ, выделяющих при обжиге газы, например, порообразующих (выгорающих) добавок.

Читайте так же:
Вес одного кирпича стандарт

Таким образом, структуру керамики можно назвать микроконгломератной, а при значительном содержании пор – капиллярно-пористой с открытыми порами.

Если в плотной и технической (оксидной) керамике пористость играет отрицательную роль – снижает прочность, то в строительной керамике поры могут иметь и положительное, и отрицательное значение. Это касается, в первую очередь стеновой керамики – кирпича и керамических камней. Благодаря открытой пористости кирпичная стена «дышит», т.е. обладает необходимой для стенового материала газопроницаемостью. В то же время при большой влажности воздуха внутри помещения (бани, прачечные и пр.) влага задерживается в порах кирпича стены, замерзает в наружном слое зимой и вызывает разрушение кирпича. Пористая керамика, таким образом, относится к материалам с малой прочностью и морозостойкостью, а также со значительной водопроницаемостью (вследствие открытости пор). Поэтому для строительных керамических изделий, работающих в условиях постоянной влажности, применяют плотную керамику (дорожный кирпич, плитки для пола, санитарно-технические изделия, трубы)

Характеристики структуры пористой керамики в цифрах: пористость 10-40%; водопоглощение по массе от 5 до 20 %; водопоглощение по объему от 10 до 40%. Плотная керамика имеет 0,5. 5 % водопоглощение по массе и 1. 10% по объему.

Теплопроводность керамики: 1,16 Вт/м.К – для абсолютно плотного черепка, 0,8 Вт/м.К – для кирпича, 0,2 Вт/м.К и менее – для эффективных (теплоизоляционных) изделий.

Прочность пористой керамики до 30 МПа, плотной — до 100 МПа; морозостойкость пористой керамики 15-50, плотной – выше.

Свойства керамического стенового кирпича в соответствии с ГОСТ 530-95 изложены в лабораторном практикуме. Там же приведены разновидности стенового кирпича и керамических камней по размерам.

Технология производства кирпича

На рис. 2 приведена блок-схема технологического процесса производства кирпича способом пластического формования

Рис.2. Блок схема технологического процесса производства кирпича способом пластического формования

На рис.3 представлена развернутая схема операций подготовки глиномассы и пластического формования кирпича.

Рис.3. Технологическая схема производства кирпича способом пластического формования.

1 – ящичный подаватель, 2 – транспортер, 3 – дробление глины на дезинтеграторных вальцах, 4 – помол глины на бегунах, 5 – транспортер, 6 – формование кирпича на ленточном прессе, 7 – резка кирпича-сырца на автомате.

Песок, добавки и воду, в случае недостаточной естественной влажности глины, можно добавлять на стадии помола на бегунах (как отмечено в блок-схеме).

Ленточный пресс, или экструдер (рис.4), представляет собой машину, по принципу действия аналогичную мясорубке, но без ножей.

Глина поступает сверху в глиномялку 8, продавливается через решетку 7 – в вакуум-камеру 6. В вакуум-камере создается разрежение, в результате часть воды испаряется, что способствует в дальнейшем упрочнению кирпича за счет уменьшения капиллярных пор, остающихся при испарении избыточной воды. Далее шнековый вал 1 уплотняет глину в прессовой головке 2 и через мундштук 3 с отверстием в идее прямоугольника размером 250 х 120 мм выдавливается глиняный брус 4, который в дальнейшем разрезается на отдельные кирпичи. Полученный необожженный кирпич называется «кирпич-сырец».

Кирпич-сырец укладывается на вагонетки и поступает на сушку в туннельную сушилку, где навстречу движущимся вагонеткам с кирпичом идут отходящие из печи обжига горячие газы, высушивающие кирпич.

Рис.4. Ленточный вакуумный пресс. 1 – шнековый вал, 2 – Прессовая головка, 3 – мундштук, 4 – глиняный брус, 5 – крыльчатка, 6 – вакуум-камера, 7 – решетка, 8 — глиномялка.

Обжиг кирпича на современных заводах проводится в туннельных печах, по принципу действия сходных с туннельными сушилками, но в печи, в отличие от сушилки, на стенках средней части туннеля располагаются горелки, обжигающие своим пламенем кирпич, проезжающий мимо них на вагонетках. Температура обжига обычного стенового кирпича около 1000°С. Обожженный кирпич несколько остывает к концу туннеля печи, но принимает температуру окружающего воздуха уже на складе готовой продукции.

Способ производства кирпича методом полусухого прессования отличается, прежде всего, подготовкой глины. Глину сушат в барабанных сушилках, измельчают в сухом виде на дезинтеграторах и увлажняют водой или паром до 8-10 % влажности. Далее прессуют отдельные кирпичи на гидравлических прессах и подают в вагонетках на обжиг. Стадия сушки сырца в этом методе отсутствует.

Читайте так же:
Как убрать белые пятна с облицовочного кирпича

Один и тот же материал, полученный разными способами, имеет различие в свойствах. Так, например, кирпич полусухого прессования отличается от кирпича, полученного способом пластического формования (при одном и том же сырье), меньшим сопротивлением изгибу. Изучение технологии в нашем курсе как раз имеет целью выяснение влияния способа получения на свойства материалов.

На свойства кирпича и других керамических изделий влияет не только состав глины и глиномассы, не только способ формования, но и температура обжига. Если для стенового кирпича обычная температура обжига 900…1000°С, то дорожный кирпич, плитки для пола, огнеупорные материалы обжигаются при более высокой температуре – до 1400°С. Материалы, обожженные при разных температурах, имеют разную структуру.

4. Состав структура и свойства керамики

Из раздела о превращениях глины при обжиге (см. выше) ясен химический состав строительной керамики: сплав из силикатов алюминия и кремнезема. По фазовому составу в керамике можно выделить: кристаллическую фазу, аморфную фазу и поры. Аморфная фаза имеет тот же химический состав, что и кристаллическая, она образовалась при оплавлении кристаллов и играет роль связующего в керамическом материале. Содержание газовой фазы – пор зависит от степени спекания (температуры обжига) и наличия в составе глиномассы веществ, выделяющих при обжиге газы, например, порообразующих (выгорающих) добавок.

Таким образом, структуру керамики можно назвать микроконгломератной, а при значительном содержании пор – капиллярно-пористой с открытыми порами.

Если в плотной и технической (оксидной) керамике пористость играет отрицательную роль – снижает прочность, то в строительной керамике поры могут иметь и положительное, и отрицательное значение. Это касается, в первую очередь стеновой керамики – кирпича и керамических камней. Благодаря открытой пористости кирпичная стена «дышит», т.е. обладает необходимой для стенового материала газопроницаемостью. В то же время при большой влажности воздуха внутри помещения (бани, прачечные и пр.) влага задерживается в порах кирпича стены, замерзает в наружном слое зимой и вызывает разрушение кирпича. Пористая керамика, таким образом, относится к материалам с малой прочностью и морозостойкостью, а также со значительной водопроницаемостью (вследствие открытости пор). Поэтому для строительных керамических изделий, работающих в условиях постоянной влажности, применяют плотную керамику (дорожный кирпич, плитки для пола, санитарно-технические изделия, трубы)

Характеристики структуры пористой керамики в цифрах: пористость 10-40%; водопоглощение по массе от 5 до 20 %; водопоглощение по объему от 10 до 40%. Плотная керамика имеет 0,5. 5 % водопоглощение по массе и 1. 10% по объему.

Теплопроводность керамики: 1,16 Вт/м.К – для абсолютно плотного черепка, 0,8 Вт/м.К – для кирпича, 0,2 Вт/м.К и менее – для эффективных (теплоизоляционных) изделий.

Прочность пористой керамики до 30 МПа, плотной — до 100 МПа; морозостойкость пористой керамики 15-50, плотной – выше.

Свойства керамического стенового кирпича в соответствии с ГОСТ 530-95 изложены в лабораторном практикуме. Там же приведены разновидности стенового кирпича и керамических камней по размерам.

Технология производства керамического кирпича полусухого прессования

Производство керамического кирпича методом полусухого прессования – это сложный, многостадийный технологический процесс, направленный на получение современного высококачественного строительного материала, имеющего более низкую стоимость, нежели традиционный кирпич пластического прессования.

Сырьевыми материалами для производства такого кирпича служат красножгущиеся суглинки, кварцевый песок, возможно карбонатные опоковидные породы, может использоваться ряд выгорающих добавок, таких как угольные шламы или древесные опилки, а также дроблёный бой бракованного кирпича.

Разработка карьеров сырьевых материалов ведется предприятиями хозяйственным способом с использованием горно-транспортного оборудования: экскаваторов (одно- или многоковшовых), бульдозеров, а иногда и грейдеров. Транспортировка глины на завод осуществляется автомобильным транспортом, как правило, это самосвал с полуцилиндрическим кузовом с подогревом (для облегчения разгрузки в холодное время года).

Для хранения глины, ее усреднения и вылеживания используется закрытое глинохранилище. Длительное вылеживание сырья в глинохранилище значительно улучшает его технологические свойства.

Далее осуществляется предварительное измельчение, необходимое для разрушения крупных агрегатированных кусков глины. Для этой технологической операции используется двухвальный рыхлитель. Глинорыхлитель работает следующим образом: крупные комья глины, попадая внутрь данной установки, разрезаются билами (рабочий орган данной установки, представляющий собой выступ на вращающейся оси), а при сухой глине дробятся. Измельченные комья через металлическую решетку с размером ячеек 150-200 мм направляются в ящичный питатель. Для очистки валов от налипания на двух боковых стенках корпуса предусмотрено два ряда ножей. Дозирование компонентов керамической массы, а также стабилизация её подачи на дальнейшую обработку, обеспечиваются ящичными питателями.

Читайте так же:
Как посчитать количество кирпичей для печи

Ящичный питатель – установка прямоугольной формы с открытым верхом, в качестве дна которой выступает ленточный транспортер. Положение его передней стенки является регулируемым, от положения которой зависит объём материала, попадающего на ленточный транспортёр.

Пройдя магнитный сепаратор, глинистое сырье поступает на вальцы грубого помола (или дробления), где подвергается помолу и истиранию.

Тонкое измельчение (или помол) пластичных сырьевых материалов (глин и суглинков) сводится к их перетиранию с целью разрушения первичных связей, связывающих отдельные зёрна в крупные агрегатные включения. Для этого применяют такие устройства, как дифференциальные вальцы. Основными рабочими органами данной установки являются два гладких вала, вращающихся с разной скоростью. При работе вальцев грубого помола материал поступает на тихоходный вал, который затягивает массу в зазор между вращающимися с разной скоростью валами и раздавливает. Зазор между валами составляет 3-4 мм, при этом достигается максимальная эффективность обработки.

Далее, из полученной сыпучей субстанции необходимо получить сплошную плотную массу (пресс-порошок) с заданными ей температурой и влажностью, соответствующих формовочным.

Пресс-порошком называют сыпучую несвязную субстанцию, с заданным гранулометрическим составом и влажностью.
Для этого глину подсушивают в специальной установке — сушильном барабане, представляющем собой сварной металлический цилиндр с огнеупорной износостойкой футеровкой диаметром 1,5 – 3,0 и длиной 15 м, опирающийся на ряд роликов. Барабан имеет наклон 3 – 5 градусов и приводится в действие от привода через зубчатую передачу. Материал, загружаемый через торцевое отверстие, расположенное в верхней части барабана, перемещается в результате его наклона и вращения к разгрузочному отверстию. Сушка осуществляется горячим воздухом с температурой до 800°С.

Дополнительные сырьевые материалы (карбонатные плавни, выгорающие добавки) поступают в бункеры склада добавок и ленточным транспортером подаются в ящичный питатель. Далее подается на первичное дробление в дезинтеграторные вальцы.

Дезинтеграторы состоят из двух корзин, вращающихся в противоположном направлении, представляющих собой диски, имеющие специальные металлические выступы. Степень помола зависит от частоты вращения корзины дезинтегратора, расстояния между выступами и влажности массы. Степень измельчения возрастает с увеличением скорости вращения и уменьшением расстояния между корзинами.

Измельченная сырьевая добавка ленточным транспортером подается на виброгрохот, где осуществляется её просеивание. После просеивания добавка поступает в сушильный барабан, после чего совместно с глиной проходит все дальнейшие стадии технологической переработки.

Полученный керамический пресс-порошок, конвейером подается в бункер-накопитель пресса. Из бункера-накопителя пресс-порошок раздаточным конвейером подается в глиномешалку-питатель, в которой происходит тщательное перемешивание и равномерное распределение влаги по всему объему.

Далее пресс-порошок подается в гидравлический или коленорычажный пресс, где происходит двухступенчатое формование: первая ступень прессования при давлении 4-10 МПа, вторая — 25-30 МПа, Длительность прессования должна обеспечить максимальное удаление воздуха из формируемого сырца и обычно составляет 0,5-3,5 с.
Спрессованный кирпич-сырец по рольгангу конвейера отбора сырца поступает на пост съемки-укладки, где формируется в технологические пакеты вручную либо с помощью автомата-садчика. Садка-выставка пакетов выполняется с помощью корзинчатого захвата мостовым краном.

Следующим этапом производственного процесса является сушка, однако благодаря невысокой влажности кирпича-сырца (8-12%), а также высокому давлению прессования, данную стадию технологического процесса, в большинстве случаев, объединяют с обжигом.

Сырец-кирпич сушат в камерных и туннельных сушилках, в течение 12-35 часов и температуре 90 – 120 °С.
Обжиг кирпича осуществляется в кольцевой или туннельной печи, работающей на газовом топливе при температуре 950-1050 ºС. Продолжительность обжига составляет: в кольцевых печах 1,5-3 суток, в туннельных 18-24 ч. После обжига кирпич подвергается сортировке, раскладке на поддоны и отгрузке потребителю.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector