Alsatelecom.ru

Стройматериалы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Полная площадь поверхности прямоугольного параллелепипеда

Полная площадь поверхности прямоугольного параллелепипеда

При изучении школьной математики часто встречаются задания, в которых требуется определить полную или боковую площадь поверхности прямоугольного или обычного параллелепипеда. Научимся это делать.

Для того, чтобы научиться вычислять площадь поверхности параллелепипеда необходимо представлять, что это такое.

Общие понятия

Изучим основные понятия. В дальнейших наших рассуждениях площадь будем обозначать латинской буквой S, угол между сторонами a и b будем обозначать как (ab).

Параллелепипедом в математике именуется четырехугольная призма, у которой все грани являются параллелограммами.

  1. Грань — одна из поверхностей пространственного тела.
  2. Параллелограмм — четырёхугольник с попарно параллельными противоположными сторонами.
  3. Поверхности параллелепипеда это сумма поверхностей всех его граней.
  4. Прямоугольный параллелепипед — пространственное тело у которого гранями являются прямоугольники.
  5. Прямоугольник — четырёхугольник у которого все углы прямые.
  6. Куб — пространственное тело у которого гранями являются квадраты.
  7. Квадрат — прямоугольник у которого все стороны равны между собой.
  8. Равными называются фигуры, совмещающиеся при наложении.

Нахождение площадей фигур

Рассмотрим, как находятся площади, могущие составлять грани параллелепипеда.

  1. Площадь квадрата равна произведению его стороны самой на себя. Формула площади квадрата имеет вид S = a*a = a^2.
  2. Прямоугольника — вычисляется с помощью умножения большей его стороны (длины) на меньшую его сторону (ширину). Формула площади прямоугольника имеет вид S = a*b.
  3. Параллелограмма — найти сложнее и имеется несколько различных способов. Наиболее часто в математике применяются формулы для нахождения с помощью стороны и опущенной на неё высоты или двух сторон и синуса угла между ними. Записываются они следующим образом: S = a*h, S = a*b*sin (ab).

Рассмотрим на примерах как найти площадь каждой из рассматриваемых нами фигур.

1. Длина стороны квадрата равна 1600 метров. Определим его площадь.

  • S = a*a, отсюда в искомом случае S = 1600*1600 = 2 560 000 метров квадратных.

2. Стороны прямоугольника равны 90 и 200 метров соответственно. Определим его S.

  • S = a*b, следовательно в нашем варианте получится S = 90*200 = 18 000 метров квадратных.

3. С параллелограммом рассмотрим два случая нахождения.

Сторона равна 300 метров, а опущенная на неё высота 250 метров. Тогда получится:

  • S = a*h = 300*250 = 75 000 метров квадратных.

Второй вариант — стороны равны 550 и 200 метров соответственно. Угол между ними 30 градусов. Имеем:

  • S = a*b*sin (ab) = 550*200*sin 30 = 110 000*0.5 = 55 000 квадратных метров.

Как видно из примеров, приведённых выше, никаких сложностей нет.

Площадь поверхности параллелепипеда

Так как наши тела имеют три принципиально различных варианта, то каждый из них мы рассмотрим в отдельности. Учтём, что полной поверхностью является сумма площадей всех граней тела, а боковой — только боковых граней.

Площадь поверхности куба

Здесь все крайне просто — грани этой фигуры равны между собой, так что S = a*a*6.

На примере это выглядит следующим образом:

Читайте так же:
Желтый огнеупорный шамотный кирпич

Сторона равна 88 сантиметров. Площадь полной поверхности?

При данных условиях имеем:

S = a*a*6 = 88*88*6 = 46 464 сантиметра квадратного.

Площадь поверхности прямоугольного параллелепипеда

Здесь все так же довольно легко — нужно помнить, что противоположные грани равны. Таким образом, находим поверхность трёх различных граней, и каждую удваиваем. Формулы нахождения будут выглядеть следующим образом:

S = 2*(S1 + S2 + S3), где S1, S2, S3 площади всех граней соответственно.

Второй вариант S = 2*(a*b + a*c + b*c), где a, b, c соответствующие рёбра прямоугольного параллелепипеда.

Снова рассмотрим пример. Пусть рёбра прямоугольного параллелепипеда равняются 20, 30 и 40 метров. Площадь полной поверхности?

Имеем, S = 2*(a*b + a*c + b*c) = 2*(20*30 + 20*40 + 30*40) = 2*(600 + 800 + 1200) = 2*2600 = 5 200 квадратных метров.

Как видно, находить площадь прямоугольного параллелепипеда также совершенно несложно.

Поверхность параллелепипеда

Теперь рассмотрим случай когда заданное нам тело имеет вид простого параллелепипеда, его гранями являются обычные параллелограммы. Здесь, как и в предыдущем случае противоположные грани равны. Следовательно, определив поверхность трёх различных граней, мы сможем определить и полную поверхность. Значит, одна из формул опять-таки будет иметь вид:

  • S = 2*(S1 + S2 + S3), где S1, S2, S3 площади трёх различных граней соответственно. Запишем исходя из наших рассуждений, ещё две формулы:
  • S = 2*(a*h1 + b*h2 + c*h3), где a, b, c соответствующие рёбра параллелепипеда, а h1, h2, h3 опущенные на них высоты.
  • S = 2*(a*b*sin (ab) + a*c*sin (ac) + b*c*sin (bc)), где a, b, c соответствующие рёбра, а (ab), (ac), (bc) углы между ними.

Снова приведём пример:

  • a = 15, b = 25, c = 25, h1 = 10, h2 = 20, h3 = 15. Пл. полной поверхности? Согласно формуле получим:
  • S = 2*(a*h1 + b*h2 + c*h3) = 2*(15*10 + 25*20 + 25*15) = 2*(150 + 500 + 375) = 2*1025 = 2 050 миллиметров квадратных.

В некоторых заданиях требуется определение только площади боковой поверхности параллелепипеда. В таком случае чётко указывается, что является основанием и находится только суммарная пл. четырёх боковых граней. Все приведённые выше рассуждения остаются верными.

Заключение

Тщательно изучив все сказанное выше, можно отметить, что никакой особой сложности задача по определению площади параллелепипеда не вызывает. Нужно всего-навсего чётко представлять все данные в материале математические понятия, абсолютно точно выучить формулы, ну и, разумеется, уметь хорошо проводить арифметические действия.

Видео

Из видео вы узнаете, как находить площать прямоугольного параллелепипеда.

Ответы к странице 193 №689-699 ГДЗ к учебнику «Математика» 5 класс Бунимович, Дорофеев, Суворова

Задание 689

Сколько вершин, граней, рёбер: а) у шестиугольной пирамиды; б) у десятиугольной пирамиды; в) у стоугольной пирамиды?

а) шестиугольная пирамида: 7 вершин, 7 граней, 12 рёбер
б) десятиугольная пирамида: 11 вершин, 11 граней, 20 рёбер
в) стоугольная пирамида: 101 вершина, 101 грань, 200 рёбер

Задание 690

Какой длины проволоку достаточно взять, чтобы сделать каркасную модель: а) куба с ребром 10 см; б) прямоугольного параллелепипеда с изме-рениями 6 см, 10 см, 14 см?

Для того, чтобы узнать длину проволоки, нужно узнать периметр фигур
а) 10 * 12 = 120 см
б) 14 * 4 + 6 * 4 + 10 * 4 = 120 см

Задание 691

Нужно изготовить каркасную модель треугольной пирамиды, все рёбра которой равны 7 см. Сколько потребуется проволоки?

У треугольной пирамиды 6 рёбер, поэтому найдем периметр фигуры, он равен длине проволоки:
7 * 6 = 42 (см)
Ответ: 42 см проволоки понадобится.

Задание 692

Многогранники на рисунке 10.20, составлены из одинаковых параллелепипедов, один из которых изображён на рисунке 10.20, а. Определите длины выделенных ломаных.

Читайте так же:
Кирпич ручной работы технология

б) 2 + 2 + 5 + 1 = 10 см
в) 1 + 1 + 2 + 2 + 1 + 5 = 12 см
г) 5 + 2 + 5 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 1 = 25 см

Задание 693

1) У пирамиды 1883 вершины. Сколько вершин в основании пирамиды?
2) У пирамиды 1800 рёбер. Какая это пирамида?
3) У пирамиды 28 граней. Сколько у неё вершин?
4) Существует ли пирамида, у которой 1999 рёбер?
5) Сумма числа рёбер и вершин пирамиды равна 25. Какая это пирамида?

1) 1882 вершины в основании
2) многорёберная или 900 – угольная
3) 28 вершин, так как 27 вершин в основании, и ещё одна, не принадлежащая основанию
4) у пирамиды должно быть четное число рёбер, а 1999 – нечётное число, поэтому пирамида не существует
5) Найдем, какая это пирамида (25 – 1) : 2 = 24 : 2 = 12, то есть двенадцатиугольная пирамида.

Измерения параллелепипеда

Задание 694

У прямоугольного параллелепипеда длина равна 5 см, ширина — 3 см, высота — 2 см. Начертите все различные грани этого прямоугольного параллелепипеда в натуральную величину.

Задание 695

Найдите измерения прямоугольных параллелепипедов (рис. 10.20, б–в)

б) Длина 5 м
Ширина 2 + 2 = 4 м
Высота 1 м
в) Длина 5 м
Ширина 1 + 1 = 2 м
Высота 2 + 1 = 3 м

Задание 696

Сколько фигур и какие надо вырезать из стекла, чтобы сделать аквариум, длина которого равна 40 см, ширина — 20 см, а высота — 30 см

Надо вырезать 5 прямоугольников
1 прямоугольник – дно, длиной 40 см и шириной 20 см
2 прямоугольника длиной 40 см и высотой 30 см
2 прямоугольника длиной 20 см и высотой 30 см

Задание 697

Найдите сумму площадей всех граней: а) куба с ребром 6 дм; б) параллелепипеда, длина которого равна 8 см, ширина — 4 см, высота — 3 см

а) У куба 6 одинаковых граней, находим площадь одной и умножаем на 6
6 * 6 * 6 = 36 * 6 = 216 (дм²)
х36
6
216
б) У параллелепипеда каждого вида граней по 2, поэтому находим площадь каждой и умножаем на 2
(8 * 4 + 8 * 3 + 4 * 3) * 2 = 744 (дм²)

Задание 698

Из кубиков с ребром 2 см сложили параллелепипед (рис. 10.21). Определите его длину, ширину и высоту. Из скольких кубиков сложен этот параллелепипед?

6 см длина
6 см ширина
4 см высота
Всего в нем 18 кубиков, верхняя и нижняя часть по 9 кубиков.

Задание 699

В какую коробку войдёт больше кубиков с ребром 1 см: с размерами 4 см, 3 см и 2 см или 2 см, 2 см и 5 см?

1) 4 * 3 * 2 = 24 (см³) — объем 1-ой коробки
2) 2 * 2 * 5 = 20 (см³) — объем 2-ой коробки
3) 1 * 1 * 1 = 1 (см³) — объем кубика
4) 24 : 1 = 24 (к.) — войдет в первую коробку
5) 20 : 1 = 20 (к.) — войдет во вторую коробку
24 кубика ˃ 20 кубиков, значит, войдет больше в коробку со сторонами 4 см, 3 см и 2 см.
Ответ: больше кубиков войдет в первую коробку.

  • Назад
  • Вперед
  • ГДЗ
  • ГДЗ по математике
  • ГДЗ Математика учебник 5 класс Бунимович, Дорофеев, Суворова
Читайте так же:
Кирпич печной м 300 гжель

Ответы к учебнику за пятый класс «Математика. Арифметика и геометрия», авторы учебника: Е.А.Бунимович, Г.В.Дорофеев, С.Б.Суворова. Мы ни на минуту не сомневаемся, что вы и самостоятельно можете с легкостью выполнить все эти задания, найти ответы и решить все задачи без нашего решебника. Но ГДЗ на 7 гуру поможет вам очень быстро проверить, правильно ли выполнено домашнее задание.

В учебнике вам может встретиться обозначение дроби через косую черту, например 1/2. В тетрадь это записывать как $frac12$.
Если дроби приводятся к общему знаменателю, числитель и знаменатель умножают на одно и то же число, и это число мелко пишут над дробью: 1/2 (3 = 3/6. Это то же самое, что $frac<1^<(3>><2;;>=frac36$
Запись смешанных дробей: 3_1/2 это то же самое что $3frac12$.

Прямоугольный параллелепипед. Пирамида.

Многогранник — это поверхность, составленная из многоугольников. Грани многогранника — это многоугольники, из которых он составлен. При этом никакие две соседние грани многогранника не лежат в одной плоскости. Стороны граней — это рёбра многогранника, а их концы — это его вершины. На рисунке ниже изображены многогранники.

Один из самых простых многогранников — это прямоугольный параллелепипед. Он составлен из шести прямоугольников, т.е. он ограничен шестью гранями.

ABCDA1B1C1D1 — прямоугольный параллелепипед. Ребра прямоугольного параллелепипеда — это стороны граней (в нашем случае: AB, BC, CD, DA, A1B1, B1C1, C1D1, D1A1, AA1, BB1, CC1, DD1 ). А его вершины — это вершины граней (в нашем случае: A, B, C, D, A1, B1, C1, D1). То есть мы получили, что у прямоугольного параллелепипеда 8 вершин и 12 рёбер. Грани прямоугольного параллелепипеда, которые не имеют общих вершин, называют противолежащими (в нашем случае это пары: ABB1A1 и DCC1D1, ABCD и A1B1C1D1, ADD1A1 и ВСС1В1). Противолежащие грани параллелепипеда равны.

Площадью поверхности параллелепипеда называют сумму площадей всех его граней.

Измерения прямоугольного параллелепипеда — это длина трех рёбер, имеющих общую вершину. Например, ребра ВВ1, В1А1, В1С1 являются измерениями ABCDA1B1C1D1:

Измерения имеют названия: длина, ширина, высота. Данные названия введены, чтобы различать измерения:

Диагональ параллелепипеда — это отрезок, соединяющий две его вершины, не принадлежащие одной грани. Например, AC1 — диагональ ABCDA1B1C1D1:

Частным случаем прямоугольного параллелепипеда является куб. Куб — это прямоугольный параллелепипед, все измерения которого равны:

EFHGE1F1H1G1 — куб, его высота, ширина и длина равны. Гранями куба являются 6 равных квадратов.

Рассмотрим следующую фигуру:

Читайте так же:
Сколько за день рабочий может положить кирпича

Данная фигура состоит из шести прямоугольников, которые попарно равны (выделены одним цветом). Если мы согнём по линиям данную фигуру и склеим, то получим модель прямоугольного параллелепипеда, противоположные грани которого будут одного цвета. Рассматриваемую фигуру называют развёрткой прямоугольного параллелепипеда. Как сказано выше, куб состоит из 6 равных квадратов, значит, его развертка будет иметь следующий вид:

В данном случае куб «разрезали» по 6 горизонтальным ребрам и 1 вертикальному, при этом противоположные грани выделены одним цветом. Таким образом, «разрезая» любой многогранник по ребрам так, чтобы все грани оказались в одной плоскости, можно получить его развертку. Развертки многогранников нужны, например, для создания их объемных моделей.

Вторым многогранником, который мы рассмотрим, является пирамида. Пирамида — это многогранник, в основании которого лежит многоугольник, а боковые грани являются треугольниками, имеющими общую вершину, которая является вершиной пирамиды.

Рёбра основания пирамиды — это стороны основания пирамиды. Боковые рёбра пирамиды — это стороны боковых граней, которые не принадлежат основанию. Пирамида называется в соответствии с числом сторон многоугольника, который является его основанием. Например, на рисунке ниже изображены треугольная пирамида (тетраэдром) и пятиугольная пирамида.

Если мы «разрежем» по боковым рёбрам пятиугольную пирамиду, то получим следующий многоугольник, который будет являться развёрткой данной пирамиды:

Поделись с друзьями в социальных сетях:

Калькулятор расчета площади прямоугольного параллелепипеда

Параллелепипед — это многогранник, который представляет собой частный вид прямоугольной шестигранной призмы. В основании параллелепипеда лежит прямоугольник или равносильный ему четырехугольник, а в качестве боковых поверхностей выступают параллелограммы. Как и любая призматическая фигура, параллелепипед широко распространен в реальной жизни, но в большинстве случаев реальный многогранник принимает форму прямоугольного параллелепипеда.

Геометрия параллелепипеда

Прямоугольный параллелепипед представляет собой два одинаковых прямоугольника, лежащие в параллельных плоскостях и четыре соединяющих их прямоугольника, которые образуют боковую поверхность фигуры. В общем случае параллелепипед представляет собой частный случай прямой четырехугольной призмы. Параллелепипед — наиболее распространенная в реальной жизни фигура. Именно форму данного многогранника имеют такие объекты как дома, комнаты, кирпичи, картонные коробки, блоки компьютеров, упаковки молока, спичечные коробки и многое другое.

Реальный мир состоит их различных геометрических фигур, поэтому вам может понадобиться калькулятор, который мгновенно посчитает площадь поверхности объекта, имеющего форму прямоугольного параллелепипеда, будь то корпусная мебель, кладовка или системный блок стационарного компьютера.

Площадь поверхности параллелепипеда

Площадь полной поверхности такой призмы определяется как сумма площадей всех граней. Параллелепипед представляет собой шестигранник, каждая пара граней которого равны между собой. Это означает, что каждая грань параллелепипеда имеет свою конгруэнтную пару. Таким образом, площадь поверхности данной призматической фигуры выражается как двойная сумма площадей каждой грани.

Читайте так же:
Система работы производства кирпича

S = 2 (Sa + Sb + Sc)

Так как каждая грань параллелепипеда представляет собой обычный прямоугольник, то площадь одной грани определяется как произведение сторон многоугольника. Если призматическая фигура имеет стороны a, b и c, то площадь ее полной поверхности будет равна:

S = 2 (ab + bc + ac)

Для более простого понимания можем представить формулу через длину, ширину и высоту параллелепипеда. В этом случае в формуле будет лишь небольшое изменение:

S = 2 (ab + bh + ah)

Таким образом, для определения площади полной поверхности призматической фигуры вам понадобится узнать три ее параметра. Введите эти данные в форму онлайн-калькулятора и вы получите мгновенный результат. Кроме того, калькулятор сразу подсчитает длину диагонали многогранника. Расчет площади поверхности призматической фигуры может понадобиться вам во многих ситуациях.

Примеры из жизни

Покраска стен

Допустим, вы хотите покрасить стены, пол и потолок кухни белой краской. Вам необходимо купить достаточное количество краски для обработки выбранного помещения. Зная, что расход масляной краски на 1 квадратный метр поверхности составляет приблизительно 200 грамм, вы можете определить, сколько материала вам понадобится для работы. Пусть высота кухонного помещения составляет 3 м, ширина 2 м, а длина — 5 м. Введите эти данные в онлайн-калькулятор и вы получите результат в виде:

Таким образом, вам понадобится покрасить 62 квадратных метров поверхности. Для этого вам потребуется купить 12,4 кг масляной краски или 5 банок краски по 2,8 кг.

Производство

Допустим, вы работаете на производстве и покрываете стальной квадратный профиль защитным покрытием, окуная детали в ванную с раствором. Для правильного расчета параметров покраски вам необходимо знать площадь поверхности одного стального профиля, который имеет форму параллелепипеда. Стандартный квадратный профиль имеет размеры: длина 6 м, сторона а = 80 мм, сторона b = 80 мм. Для правильного расчета вам необходимо подставить все размеры в одних единицах измерения, к примеру, в сантиметрах. В этом случае вбейте в онлайн-калькулятор три стороны параллелепипеда, которые равны 600, 8 и 8. Вы получите результат в виде:

Таким образом, полная площадь поверхности стального профиля составляет 19 328 квадратных сантиметров или 1,9828 квадратных метра. Зная площадь поверхности одного профиля, вы легко сможете определить параметры покраски деталей защитным покрытием.

Заключение

Большое количество реальных объектов имеет форму параллелепипеда: это и кирпичи, и комнаты, и здания, и детали машин, и многое другое. Расчет площади данного многогранника может понадобиться в самых неожиданных ситуациях, как-то житейские проблемы или профессиональные расчеты. Наш онлайн-калькулятор поможет вам быстро определить объемы и площади поверхностей любых правильных геометрических фигур.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector