Alsatelecom.ru

Стройматериалы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Технические характеристики огнеупорного печного кирпича

Технические характеристики огнеупорного печного кирпича

Технические характеристики огнеупорного печного кирпича

Традиционный способ отопления малоэтажных жилых домов предусматривает наличие специальных капитальных сооружений разных видов. Материалом для них является печной кирпич характеристики, которого обеспечивают необходимую устойчивость к высокотемпературным воздействиям. Он используется для создания оболочек способных изолировать открытый огонь и защиты строительных конструкций от разрушения.

Жаростойкий кирпич предназначен для облицовки внутренних поверхностей печей бытового и производственного назначения, а также каминов, дымоходных каналов и труб. Данный строительный материал используется для строительства наружных стационарных сооружений барбекю и мангалов. Шамот, помимо прочего, может использоваться для облицовки топочных камер твердотопливных водогрейных и отопительных котлов.

Теплофизические свойства огнеупорных материалов

В таблице представлены теплофизические свойства огнеупорных материалов в зависимости от температуры.
Также приведена максимальная рабочая температура огнеупоров.

Даны следующие теплофизические свойства огнеупоров:

  • плотность при 20°С, кг/м 3 ;
  • коэффициент теплопроводности, Вт/(м·град);
  • массовая удельная теплоемкость, кДж/(кг·град);
  • максимальная рабочая температура,°С.

Теплофизические свойства представлены для следующих огнеупорных материалов: шамотный кирпич, пеношамот, кирпич: динасовый, магнезитовый, хромомагнезитовый, изделия: силлиманитовые (муллатовые), корундовые (алундовые), цирконовые, карборундовые, плавленный шлак, песок кварцевый.

Примечание: температура в формулы для расчета теплопроводности и удельной теплоемкости огнеупоров подставляется в градусах Цельсия.

Маркировка

Для удобства классификации и простоты в выборе этого строительного материала, была разработана маркировка, благодаря которой можно сразу определить свойства материала. Она отражает размеры изделий, температурные свойства и технические характеристики.

Наиболее популярные марки шамотного кирпича: ША, ШБ, ШАК, ШУС, ШВ, ПВ и ПБ.

На примере бруска с маркировкой ШБ 5 СЛ расшифруем данные от производителя.

Ш – буква, говорящая о принадлежности изделия к виду шамотных алюмосиликатных кирпичей;
Б – кирпич, выполненный по требованиям ГОСТа, и относящийся к классу огнеупорности Б. Существует также класс А.

Шамотный кирпич класса А выдерживает температуру до 1350 С, а класс Б – 1400 С.

Отметка о ГОСТе гарантирует соответствие строительного изделия перечню из заданных параметров: целостность, соблюдение размеров, прочность, температура эксплуатации.

Если на этом месте находится цифра, без присутствия буквы после Ш, значит, что шамотный кирпич был произведен по ТУ производителя.

Сама цифра означает геометрические параметры, указанные в таблице ниже. Т. е. наш пример соответствует размерам 230х114х65 мм.

СЛ – указывает на производителя изделия. СЛ здесь – Сухоложский огнеупорный завод, а БГ – Богдановичский.

Есть и более глубокая классификация внутри каждой марки: по форме, размеру, теплопроводности.

Таблица с распространенными видами шамотных кирпичей, согласно ГОСТу 8691-73:

Кроме стандартной прямоугольной формы кирпича шамотного, существует еще трапециевидная и клиновая.

Шамотный кирпич

Один из самых древних и востребованных кладочных материалов – кирпич, который не теряет своей актуальности уже несколько тысячелетий, держится на плаву благодаря своей универсальности. В зависимости от технических характеристик, он применяется практически в любой строительной сфере. Разновидность кирпича, производимая для применения в условиях повышенных температур и прямого воздействия огня – шамотный, он же печной или огнеупорный кирпич. Шамот относится к керамическим кирпичам, но выделен в отдельную категорию, в связи его с уникальными свойствами. Его цена значительно выше, чем у строительного или облицовочного кирпича, что обусловлено узкой специализацией и меньшими объемами производства, но купить именно шамотный кирпич, для устройства каминной или печной системы просто необходимо. Если вы решили выложить мангал из кирпича, то, несмотря на более высокую стоимость, также желательно купить именно печной кирпич.

Производство

Шамотный кирпич производится из смеси огнеупорных глин и шамотного порошка. Определенный сорт глины, с высоким содержанием оксида алюминия и других химических веществ, предварительно обжигается при высоких температурах, до абсолютного выпаривания воды и потери пластических свойств, после чего измельчается до зерна в 1 мм. К полученному таким образом шамотному порошку добавляют смолотую и просушенную огнеупорную глину, доля шамота может составлять от 50 до 60%. Сырец формируют как пластическим, так и полусухим прессовочным методом, выдерживают в специальных сушилках до достижения им влажности 2–4% и обжигают в печах при температуре 1250–1380 °C. Получившийся огнеупорный кирпич обладает высокой прочностью и устойчивостью как к высоким температурам, так и к их резким перепадам.

Структура

Шамотный (печной, огнеупорный) кирпич, бывает только полнотелым, из-за экстремальной рабочей среды, для которой предназначен. Он имеет пористую структуру, но без значительных воздушных пустот, что объясняет его сравнительно (по отношению к полнотелому клинкерному кирпичу) небольшой вес. Плотность огнеупорного кирпича варьируется в пределах от 1700 до 1900 кг/м³.

Применение

Печной шамотный кирпич предназначен для выкладывания внутренних топок и всех элементов дымоходных систем в печах (для дома, бани, сауны), для каминов и каминных зон, уличных кирпичных мангалов, барбекю и других подобных конструкций. Пористая структура этого вида кирпича позволяет ему аккумулировать температуру и долго отдавать ее в окружающую среду. Современный шамот имеет приятный песочно-золотистый оттенок и окднородную, гладкую поверхность, что делает его достаточно декоративным. Для обналички печей и каминов используют лицевой шамот, который может иметь рисунок, что дает еще большее сходство с декоративным кирпичом. На фото видно, что шамотный кирпич выпускается не только прямоугольными брусками, но и в форме трапеций, клиньев, с закругленными углами и в виде специальных элементов, востребованных в печной и каминной архитектуре.

Актуальность применения шамотного огнеупорного кирпича для дымоходных труб объясняется его устойчивостью к воздействию агрессивных составных дыма и разнице температур внутри и снаружи изделия. Обычный строительный кирпич, который хоть и выдержит до 1200 °C, но будет постепенно разрушаться из-за температурных скачков и едкости рабочей среды.

Технические характеристики

Основными характеристиками шамотного кирпича являются класс огнеупорности и размеры. По прочности, морозоустойчивости и теплопроводности этот кирпич соответствует стандартным маркам других видов.

Класс огнеупорности

Первая буква «Ш» обозначает, что это шамотный кирпич, вторая указывает на класс огнеупорности. Хотя выпускается несколько марок, которые применяются и в промышленности, для бытового использования оптимальными являются марки ША – температура до 1350 °C и ШБ – температура до 1400 °C, чаще применяют ШБ, как более стойкий.

Читайте так же:
Кирпич ручной формовки все форматы
Размеры

Размеры шамотного кирпича показаны цифровым индексом, стоящим после класса огнеупорности, классифицируются как прямоугольные кирпичи, так и клиновые и трапецеидальные. Самые востребованные в бытовой сфере прямоугольные кирпичи двух марок.

  1. Ш-5: 230 × 114 × 65 мм (длина, ширина, высота).
  2. Ш-8: 230 × 124 × 65 мм.

Вес огнеупорного кирпича зависит от пористости, плотности, размеров и конкретной марки. Чем плотнее кирпич, тем он тяжелее.

Прочность

Марка прочности печного кирпича также обозначает его выносливость к сжатию, изгибу и деформации, и высчитывается исходя из предельной нагрузки, которую он в состоянии выдержать без разрушения. Обозначается как «М» кг/см² и у шамотного кирпича этот показатель может достигать М-500, хотя для домашнего применения в печах, каминах или мангалах, подойдет М-200, как лучшее соотношение технических характеристик и стоимости.

Теплопроводность

Не самый важный, учитывая специфику применения огнеупорного кирпича, показатель, но на него стоит обращать внимание, ведь он отвечает за передачу тепла. Тепло будет уходить не из дома на улицу, а из печки в дом, поэтому высокая теплопроводность, в случае с шамотным кирпичем – это положительная характеристика. Измеряется в Вт/(м° С) и равен в среднем 0,84.

Стоимость шамотного кирпича

Купить шамотный кирпич, если возводится любая конструкция с живым огнем и дымом, придется, независимо от его солидной стоимости. Но радует то, что расход печного кирпича значительно меньший, чем при использовании рядового строительного и облицовочного кирпича. Цена на огнеупорный прямоугольный шамотный кирпич в 2014 году по стране начиналась от 20 рублей за штуку.

К особенностям печного кирпича относится потребность в специальном строительном растворе, который также базируется на шамотном порошке и обеспечивает максимальное сцепление с поверхностью и ровный, тонкий шов. Несмотря на обилие обучающих материалов и кажущуюся легкость процесса, доверить такое важное дело как кладку печи или камина, лучше профессиональному печнику, особенно если это внутридомовая конструкция, которая может принести реальный вред в виде пожара или отравления угарным газом, в случае нарушения технологии. А вот мангал из шамотного кирпича можно попробовать выложить и своими руками.

Что такое теплопроводность?

Одним из весомых свойств является все же теплопроводность кирпича (Т) – возможность пропускать тепло через себя, несмотря на разную температуру. Она указывает на то, до какой степени кирпичная стена теплая, каким образом этот материал способен проводить и передавать тепло.

Керамические изделия используют при возведении несущих стен, перегородок между комнатами, облицовочные – дают возможность придать дому и прилегающему к нему забору аккуратный и достойный вид, презентабельность, создают неповторимый стиль, а также увеличивают тепло в доме. При выборе стройматериала для постройки перекрытий, стен и полов именно такие факторы являются самыми важными.

На вопрос: «Каким же образом определить величину тепловой характеристики?», отвечают эксперты с богатым и длительным опытом работы. Они авторитетно настаивают на том, что многочисленные виды кирпичной кладки детально исследовались в лабораторных условиях. В соответствии с полученными данными выставлен определенный коэффициент теплопроводности кирпича.

Показатели указывают на различные температуры, поскольку тепловая энергия имеет способность постепенного перехода из горячего состояния в холодное. При довольно высокой температуре этот процесс можно увидеть открыто. Высокоинтенсивная передача тепла обусловлена градациями в температуре.

Характеристики

Шамотный кирпич просто незаменим в сфере частного строительства при возведении печей и каминов. Но для того, чтобы конструкция эксплуатировалась долгие годы, необходим качественный материал. Это особенно актуально именно для частников, так как крупные промышленные предприятия имеют больше возможностей по контролю применяемых в строительстве материалов.

Все показатели шамотного кирпича — от прочности до морозостойкости, от пористости до плотности строго регламентируются государственными стандартами. Стоит отметить, что в последние годы часть производителей при производстве шамотного кирпича руководствуется собственными техническими условиями. В результате по ряду параметров возможны некоторые расхождения. Поэтому при приобретении материала необходимо в обязательном порядке проверять сертификат соответствия на качество продукции.

Следует обратить особое внимание на вес кирпичей. Чем он меньше, тем выше теплопроводность и, соответственно, ниже теплоемкость. Оптимальная масса огнеупорного блока определена ГОСТом в пределах 3,7 кг.

Известные бренды огнеупорного кирпича

Чтобы иметь представление о том, какой кирпич нужен для печи в доме, приведем несколько наиболее известных брендов производителей данного материала. Если вы хотите получить наиболее качественный и соответствующий заявленным характеристикам шамотный кирпич, не переплачивая за него, обратите внимание на проверенные марки.

Так, можно приобрести изделия у следующих фирм:

  • Богородский завод керамических стеновых материалов;
  • Винербергер Кирпич;
  • Верхневолжский кирпичный завод;
  • Ломинцевский кирпичный завод «Керамика»;
  • Керма;
  • Группа предприятий TEREX;
  • Кирпичный завод BRAER;
  • Нерехтский завод керамических материалов.

У всех этих предприятий представлен широкий ассортимент качественных и надежных изделий. Так что, если возникнет вопрос, какой кирпич нужен для печи, можно смело отдавать предпочтение одной из перечисленных фирм. Они пользуются заслуженной популярностью среди потребителей, особенно, в регионах, где расположены производственные мощности.

Удельная теплоемкость кирпича таблица

Теплопроводность и теплоемкость кирпича

  1. Что это такое и что на них влияет?
  2. Виды материалов и их характеристики
  3. Сравнение с другими материалами
  4. Морозостойкость

Теплопроводность и теплоемкость кирпича – важные параметры, позволяющие определиться с выбором материала для возведения жилых зданий, сохраняя в них необходимый уровень тепла. Удельные показатели рассчитываются и приводятся в специальных таблицах.

Теплоемкость кирпичиков

От теплоизоляционного свойства материала зависит температура внутри помещения, вот почему теплоемкость кирпича — важный показатель, который показывает его способность аккумулировать тепло. Удельная теплоемкость определяется в ходе лабораторных исследований, согласно которым, самым теплым материалом является полнотелый кирпич. Стоит отметить, что показатель зависит от разновидности кирпичного материала.

Читайте так же:
Шлакоблок с облицовкой кирпичом

Что это такое?

Физическая характеристика теплоемкости присуща любому веществу. Она обозначает количество теплоты, которое поглощает физическое тело при нагревании на 1 градус Цельсия или Кельвина. Ошибочно отождествлять общее понятие с удельным, поскольку последнее подразумевает температуру, необходимую для нагревания одного килограмма вещества. Точно определить ее число представляется возможным только в лабораторных условиях. Показатель необходим для определения теплоустойчивости стен здания и в том случае, когда строительные работы проводятся при минусовых температурах. Для строительства частных и многоэтажных жилых домов и помещений используются материалы с высокими показателями теплопроводности, поскольку они аккумулируют тепло и поддерживают температуру в помещении.

Преимущество зданий из кирпича — позволяют сэкономить на оплате отопления.

Теплоемкость строительных материалов

Теплоемкость материалов, таблица по которой приведена выше, зависит от плотности и коэффициента теплопроводности материала.

А коэффициент теплопроводности, в свою очередь, зависит от крупности и замкнутости пор. Мелкопористый материал, имеющий замкнутую систему пор, обладает большей теплоизоляцией и, соответственно, меньшей теплопроводностью, нежели крупнопористый.

Это очень легко проследить на примере наиболее распространенных в строительстве материалов. На рисунке, представленном ниже, показано каким образом влияет коэффициент теплопроводности и толщина материала на теплозащитные качества наружных ограждений.


Из рисунка видно, что строительные материалы с меньшей плотностью обладают меньшим коэффициентом теплопроводности. Однако так бывает не всегда. Например, существуют волокнистые виды теплоизоляции, для которых действует противоположная закономерность: чем меньше плотность материала, тем выше будет коэффициент теплопроводности.

Поэтому нельзя доверять исключительно показателю относительной плотности материала, а стоит учитывать и другие его характеристики.

Керамический

Теплопроводность материала напрямую зависит от прочности и плотности изделий. Так, чем выше данные характеристики, тем меньшей способностью, они будут обладать к сохранению тепла в помещении. Керамические изделия могут быть:

  • Полнотелый — теплопроводность 0,85 Вт*мС.
  • Пустотелые — теплопроводность 0,55 Вт*мС.

Очевидно, что теплопроводность не относится к сильным сторонам керамического кирпича.

Силикатный

Отличается от предыдущего вида составом, теплопроводностью и цветом. Изготавливается из очищенного песта. Обладает более увеличенными показателями теплопроводности, которая варьируется от 0,4 до 1,3 Вт*мС.

Теплоемкость строительных материалов

Какими же должны быть стены частного дома, чтобы соответствовать строительным нормам? Ответ на этот вопрос имеет несколько нюансов. Чтобы с ними разобраться, будет приведен пример теплоемкости 2-х наиболее популярных строительных материалов: бетона и дерева. Теплоемкость бетона имеет значение 0,84 кДж/(кг*°C), а дерева — 2,3 кДж/(кг*°C).

На первый взгляд можно решить, что дерево — более теплоемкий материал, нежели бетон. Это действительно так, ведь древесина содержит практически в 3 раза больше тепловой энергии, нежели бетон. Для нагрева 1 кг дерева нужно потратить 2,3 кДж тепловой энергии, но при остывании оно также отдаст в пространство 2,3 кДж. При этом 1 кг бетонной конструкции способен аккумулировать и, соответственно, отдать только 0,84 кДж.

Но не стоит спешить с выводами. Например, нужно узнать, какую теплоемкость будет иметь 1 м 2 бетонной и деревянной стены толщиной 30 см. Для этого сначала нужно посчитать вес таких конструкций. 1 м 2 данной бетонной стены будет весить: 2300 кг/м 3 *0,3 м 3 = 690 кг. 1 м 2 деревянной стены будет весить: 500 кг/м 3 *0,3 м 3 = 150 кг.

Таблица сравнения теплопроводности бревна с кирпичной кладкой.

Далее нужно посчитать, какое количество тепловой энергии будет содержаться в этих стенах при температуре 22°C. Для этого нужно теплоемкость умножить на температуру и вес материала:

  • для бетонной стены: 0,84*690*22 = 12751 кДж;
  • для деревянной конструкции: 2,3*150*22 = 7590 кДж.

Из полученного результата можно сделать вывод, что 1 м 3 древесины будет практически в 2 раза меньше аккумулировать тепло, чем бетон. Промежуточным материалом по теплоемкости между бетоном и деревом является кирпичная кладка, в единице объема которой при тех же условиях будет содержаться 9199 кДж тепловой энергии. При этом газобетон, как строительный материал, будет содержать только 3326 кДж, что будет значительно меньше дерева. Однако на практике толщина деревянной конструкции может быть 15-20 см, когда газобетон можно уложить в несколько рядов, значительно увеличивая удельную теплоемкость стены.

Удельная теплоемкость материалов

Теплоемкость – это физическая величина, описывающая способность того или иного материала накапливать в себе температуру от нагретой окружающей среды. Количественно удельная теплоемкость равна количеству энергии, измеряемой в Дж, необходимой для того, чтобы нагреть тело массой 1 кг на 1 градус. Ниже представлена таблица удельной теплоемкости наиболее распространенных в строительстве материалов.

Для того, чтобы рассчитать теплоемкость того или иного материала, необходимо обладать такими данными, как:

  • вид и объем нагреваемого материала (V);
  • показатель удельной теплоемкости этого материала (Суд);
  • удельный вес (mуд);
  • начальную и конечную температуры материала.

Огнеупорный

Представлен динасовыми, карборундовыми, магнезитовыми и шамотными кирпичами. Масса одного кирпича довольно большая, по причине значительной плотности (2700 кг/м3). Самый низкий показатель теплоемкости при нагревании у карборундового кирпича 0,779 кДж/(кг·K) для температуры +1000 градусов. Скорость нагревания печи, уложенной из этого кирпича, значительно превышает нагрев шамотной кладки, однако охлаждение наступает быстрее.

Из огнеупорного кирпича обустраиваются печи, предусматривающие нагревание до +1500 градусов. На удельную теплоемкость данного материала большое влияние оказывает температура нагрева. К примеру, тот же шамотный кирпич при +100 градусах обладает теплоемкостью 0,83 кДж/(кг·K). Однако, если его нагреть до +1500 градусов, это спровоцирует рост теплоемкости до 1,25 кДж/(кг·K).

ВИДЫ КИРПИЧА

Для того чтобы ответить на вопрос: «как построить теплый дом из кирпича?», нужно выяснить какой лучше всего использовать его вид. Так как современный рынок предлагает огромный выбор данного строительного материала. Рассмотрим наиболее распространенные виды.

СИЛИКАТНЫЙ

Наиболее высокую популярность и широкое распространение в строительстве на территории России имеют силикатные кирпичи. Данный вид изготавливается путем смешения извести и песка. Высокую распространённость этот материал получил благодаря широкой области применения в быту, а также из-за того, что цена на него довольно не высока.

Однако если обратиться к физическим величинам этого изделия, то тут не все так гладко.

Читайте так же:
Облицовочный кирпич размеры 250х120х65

Рассмотрим двойной силикатный кирпич М 150. Марка М 150 говорит о высокой прочности, так что он даже приближается к природному камню. Размеры составляют 250х120х138 мм.

Теплопроводность данного типа в среднем составляет 0,7 Вт/(м оС). Это достаточно низкий показатель, по сравнению с другими материалами. Поэтому теплые стены из кирпича такого типа скорей всего не получатся.

Немаловажным достоинством такого кирпича по сравнению с керамическим, являются звукоизоляционные свойства, которые очень благоприятно сказываются на строительстве стен ограждающих квартиры или разделяющих комнаты.

КЕРАМИЧЕСКИЙ

Данный вид делится на два типа:

  1. Строительный,
  2. Облицовочный.

Строительный кирпич используется для возведения фундаментов, стен домов, печей и т.д., а облицовочный для отделки зданий и помещений. Такой материал больше подходит для строительства своими руками, так как он значительно легче силикатного.

Теплопроводность керамического блока определяется коэффициентом теплопроводности и численно равна:

  • Полнотелый – 0,6 Вт/м* оС;
  • Пустотелый кирпич — 0,5 Вт/м* оС;
  • Щелевой – 0,38 Вт/м* оС.

Средняя теплоемкость кирпича составляет около 0,92 кДж.

ТЕПЛАЯ КЕРАМИКА

Теплый кирпич — относительно новый строительный материал. В принципе, он является усовершенствованием обычного керамического блока.

Данный вид изделия значительно больше обычного, его размеры могут быть в 14 раз больше стандартных. Но это не очень сильно сказывается на общей массе конструкции.

Теплоизоляционные свойства практически в 2 раза лучше, по сравнению с керамическим кирпичом. Коэффициент теплопроводности приблизительно равен 0,15 Вт/м* оС.

Свойства теплой керамики

Блок теплой керамики имеет много мелких пустот в виде вертикальных каналов. А как говорилось выше, чем больше воздуха в материале, тем выше теплоизоляционные свойства данного строй-материала. Теплопотери могут возникать в основном на внутренних перегородках или же в швах кладки.

Сравнение с другими материалами

Среди материалов, способных составить конкуренцию кирпичу, существуют как натуральные и традиционные – дерево и бетон, так и современные синтетические – пеноплекс и газобетон.

Деревянные строения издавна возводились в северных и других отличающихся низкими зимними температурами районах, и это неспроста. Удельная теплоемкость дерева значительно ниже, чем у кирпича. Дома в этой местности строят из цельного дуба, хвойных пород деревьев, а также применяют ДСП.

Если дерево режут поперек волокон, коэффициент теплопроводности материала не превышает 0,25 Вт/М*К. Низкий показатель и у ДСП – 0,15. А наиболее оптимальным для строительства коэффициентом отличается древесина, разрезанная вдоль волокон – не более 0,11. Очевидно, что в домах из такого дерева достигается отличная сохранность тепла.

Таблица наглядно демонстрирует разброс в величине коэффициента теплопроводности кирпича (выражается в Вт/М*К):

  • клинкерный – до 0,9;
  • силикатный – до 0,8 (с пустотами и щелями – 0,5-0,65);
  • керамический – от 0,45 до 0,75;
  • щелевая керамика – 0,3-0,4;
  • поризованный – 0,22;
  • теплая керамика и блоки – 0,12-0,2.

При этом поспорить с деревом по уровню сохранения теплоты в доме может только теплая керамика и поризованный кирпич, которые также дороги и хрупки. Тем не менее, кирпичная кладка при возведении стен используется чаще, и не только по причине дороговизны цельного дерева. Деревянные стены боятся атмосферных осадков, выгорают на солнце. Не любит дерево и химических воздействий, к тому же древесина способна гнить и пересыхать, на ней образуется плесень. Поэтому этот материал требует специальной обработки до начала строительства.

Кроме того, огонь способен очень быстро разрушить деревянное строение, так как древесина отлично горит. В отличие от нее, большинство видов кирпича довольно устойчиво к воздействию огня, в особенности шамотный кирпич.

Что касается других современных материалов, для сравнения с кирпичом обычно выбирают пеноблок и газобетон. Пеноблоки – это бетон с порами, в состав которого входят вода и цемент, пенообразующий состав и затвердители, а также пластификаторы и другие компоненты. Композит не впитывает влагу, отличается высокой морозостойкостью, сохраняет тепло. Используется при возведении невысоких (в два-три этажа) частных построек. Теплопроводность равна 0,2-0,3 Вт/М*К.

Рассчет теплопроводности стен: таблица теплосопротивления материалов

Во многих случаях при выборе материала для строительства дома мы не вникаем, каково теплосопротивление строительных материалов, а полагаемся на «народные» методики. Самые популярные из них: «как у соседа», «как раньше», «смотри, какой толстый слой», и – венец искусства – «вроде, должно быть нормально». Что ж, ваш дом – вам и решать, какому методу отдать предпочтение. Но чтобы точно ответить на вопрос, достаточно ли тепло будет в вашем доме зимой (и достаточно ли прохладно в летний зной), нужно знать теплосопротивление стены. Откуда его можно узнать, как считать теплопроводность стены и как это поможет при ответе на ваш вопрос? Давайте разберемся по порядку.

Сравнение теплопроводности строительных материалов

Любой человек согласится, что дома должно быть всегда уютно: летом не жарко, зимой – тепло. За сохранение тепла и прохлады «отвечает» показатель теплопроходимости. Чем лучше перегородка проводит, то есть отдает тепло, тем быстрее он будет остывать и нагреваться. Стены и крыша дома должны иметь низкую проводность, а некоторые элементы, например, радиаторные батареи, могут быть хорошими проводниками. Узнать теплопроводность бетона и других смесей и блоков можно по таблицам или рассчитать по формуле.

  1. Что это такое
  2. Особенности выбора на основе этих показателей
  3. Влияющие факторы
  4. Коэффициент материалов из бетона
  5. Сравнение строительных материалов по толщине

Что это такое

Теплопроводность строительных материалов играет важную роль при их выборе. Термин означает количество тепла, которое разные перегородки одинаковой толщины могут провести за единицу времени. Чем ниже показатель, тем хуже тепло проходит – плоскость плохо нагревается и медленно остывает.

Коэффициент проницаемости показывает, сколько тепла может пройти через 1 метр метровой стены при разнице температур в 1 градус. Единицей измерения является Вт/(м*С), где м – это метры, а С – градус Цельсия.

В зависимости от значения стройматериалы используют для разных целей: с низкой проводимостью применяют для утепления, чтобы дома не было холодно, с высокой – для отвода тепла и быстрого охлаждения, например, для батарей.

Обратите внимание! Плоскости с низким значением будут медленнее остывать. Это позволит сэкономить на отоплении.

Тепловое или термическое сопротивление – это величина, обратная теплопроходимости. Она отражает, насколько сильно перегородка мешает прохождению тепла. То есть чем выше сопротивление, тем ниже проводность – этот стройматериал можно использовать для утепления. Формула для расчета сопротивления

  • R – нормативное температурное сопротивление.
  • H – толщина в метрах.
  • λ – значение проводимости.
Читайте так же:
Кирпич по ленинградском шоссе

Величина измеряется в (м*С)/Вт, где м – метр, С- градус Цельсия.

Особенности выбора на основе этих показателей

Чтобы построить хороший, прочный дом важно не забывать про теплопроницаемость стен и потолков. Увидеть важность этого свойства можно в простом примере: стена из бетона толщиной в 30 сантиметров и перегородка из кирпича в 50 см одинаково справляются с теплопотерей. Плита из железобетона должна быть примерно в 3 раза толще плиты из керамзитобетона.

При выборе стоит помнить не только о показателе конкретного материала, но и об используемом утеплителе. Например, показатель пенополистирола – 0,031-0,05 Вт/(м*С), изолона – 0,031-0,037 Вт/(м*С). Для сравнения: теплопроводность железобетона плотностью 2,5 тонны на куб. метр – 1,7, а дерева – 0,2-0,23.

Стоит отметить, зачем вообще нужно определять этот показатель при строительстве. Специалистами рассчитана норма для разных климатических поясов России и для разных мест: для стен, крыш, перекрытий. Если выбранные стройматериалы не дотягивают до нормы СНиП, их необходимо утеплить.

Обратите внимание! Если при строительстве использовались несколько стройматериалов в одном месте (например, для крыши или пола), для определения итогового коэффициента все значения складываются.

Влияющие факторы

Если сравнить свойства одного и того же стройматериала в разных условиях, легко увидеть, что теплоизоляционный коэффициент будет разным. Различается величина также у разных марок, причем разница может быть довольно значимой.

На проводимость влияют следующие факторы:

  1. Плотность. При высокой плотности частицы расположены близко друг от друга, следовательно, передача тепла будет происходить довольно быстро. Легкие стройматериалы (например, керамзит) хуже отдают тепло, чем тяжелые.
  2. Пористость. Чем она выше, тем меньше тепла пропускается. Воздух отличается маленькой проводимостью, значит, чем больше отверстий в поверхности, тем слабее будет теплопередача.
  3. Структура самих пор. Большие, сообщающиеся между собой поры повышают проницаемость бетонной перегородки. Чтобы сохранить тепло внутри, лучше выбирать мелкие, замкнутые отверстия.
  4. Влажность. При намокании бетона или кирпича воздух вытесняется, заменяется жидкостью или становится влажным воздухом. Коэффициент увеличивается почти в 20 раз.
  5. Температура. Чем она выше, тем выше коэффициент.

Обратите внимание! Зимой, когда влага превращается в лед, теплопотери увеличиваются еще сильнее. Кроме того, промерзание ведет к разрушению.

Коэффициент материалов из бетона

Бетонный раствор – это неоднородная цементно-песчаная смесь, которая имеет сложную структуру. Его коэффициент зависит от конкретного состава.

Узнать теплопроводность бетона можно по таблицам или по характеристике конкретной марки. Средние значения следующие:

  1. Теплопроводность железобетонной плиты плотностью 2,5 – 1,7.
  2. Пенобетона – 0,08-0,29.
  3. Керамзитобетона – 0,14-0,66.
  4. Красный глиняный кирпич – 0,56.
  5. Силикатный кирпич – 0,7.
  6. Блоков из газосиликата – 0,072-0,165.
  7. Теплопроводность штукатурки – 0,1-1.

Точные данные теплопроводности бетонной стены зависят от конкретных марок и их характеристик.

Сравнение строительных материалов по толщине

Таблица теплопроводности строительных материалов позволит быстро просчитать, хватает ли коэффициента перекрытия, а также найти необходимую толщину. Также можно воспользоваться онлайн калькулятором на сайтах строительных материалов.

Обратите внимание! В таблицах зачастую присутствует не одно значение теплопроницаемости, а несколько. Основное дается для сухого стройматериала при испытании в лабораторных условиях по ГОСТу, другие – для различных условий эксплуатации, например, при сухом и влажном воздухе, при разных температурах.

Для самостоятельного расчета толщины стены можно воспользоваться формулой:

Показание R можно узнать в таблице «Строительная климатология», в которой для каждого региона даны свои значения. Показания λ даны в технических характеристиках материала.

Для Москвы R составляет 3,28. Если перегородки будут выполнены из железобетона (плотность 2,5 т/ куб. м, λ= 1,690), их толщина должна составить больше 5,5 метра.

Если взять керамзитобетон плотностью 1,8 т/куб. м. (λ = 0,66), величина «снизится» до 2,16 метров. Для пенобетона плотностью 1 т/куб. м. (λ = 0,29), размер составит меньше метра – 95 см.

Легко увидеть, что, чем выше показатель проводимости тепла, тем больше должна быть толщина. Чтобы уменьшить эту величину, их дополнительно оббивают более тонкими утеплителями.

При выборе материала для пола, стены, крыши или перегородки стоит обратить внимание на теплопроводность стройматериалов. Эта величина отвечает за проведение тепла через материал, то есть за то, как быстро будет нагреваться и остывать дом. Чем она ниже, тем хуже проходит тепло и тем медленнее здание будет промерзать.

Сравнение арболитовых блоков и газобетона — что лучше

Сравнение характеристик кирпича и газобетона

Технология алмазной резки для бетонных стен

Сколько надо цемента чтобы сделать на 1 м3 бетона

Таблица Теплопроводности строительных материалов

Качество Теплопроводности материала, его суть — в данном случае теплопроводность строительного материала – это свойство переноса энергии тепла от теплой части вещества (в данном случе — материала дома), к холодной — частицами (молекулами) этого вещества.

Большая часть значений коэффициентов теплопроводности стройматериалов в данной таблице позаимствованы в Приложении № 2 СНиП II-3-79 «Строительная теплотехника», из Свода правил — СП 50.13330.2012, а также — из СНиП 23-02-2003 «Тепловая защита зданий».

Таблица дополнена значениями теплопроводности, которые взяты с некоторых сайтов самих производителей строительных материалов.

Необходимо знать, что теплопроводность ряда строительных материалов имеет свойство меняться в зависимости от степени их влажности.

И потому, в таблице приведены значения теплопроводности строительных материалов как для «сухого» состояния строительного материала, так и для «влажного» состояния такового, в соответствии с приложением СП (свода правил) 50.13330.2012.

Читайте так же:
Вес одного кирпича печного стандартного

Знание таковых значений теплопроводности стройматериалов необходимы в силу того, что строительство домов происходит в различных климатических условиях (различных регионов страны), а значит, — степень влажности помещений будет при этом разной.

Значение «А» в таблице — это условия привычной, можно сказать «среднего качества» эксплуатации стройматериалов, значение «Б» — это условия более высокой в сравнении с привычной нормой среды — эксплуатации строящегося дома.

Условия А
для материала
(«обычные»)

Теплопроводность Кирпича силикатного . При кладке на цементно-песчанный раствор.

Теплопроводность Известняка.
При плотности — 1600 куб.м.

Теплопроводность Линолеума из ПВХ на теплоизолирующей основе.
При плотности — 1800 куб.м.

Теплопроводность Линолеума из ПВХ на тканевой основе. При плотности — 1800 куб.м.

Если в «Таблице теплопроводности материалов» для какого-либо из них отсутствует значение при условиях А и/или Б, это значит, что в «Своде правил» — СП 50.13330.2012, и у самих производителей — нет соответствующих значений, либо таковые значения просто не имеют смысла.

Работы в саду и огороде в Марте Март – это первый весенний месяц. И погоду предугадать еще трудно. По календарю уже весна, а на дворе зачастую еще.

Август – последний месяц лета. Месяц, славный своим щедрым урожаем. И месяц, когда мы делаем заготовки на весь год. Работы в саду и огороде в Августе.

Пергола своими руками? Это не так сложно. Если есть необходиомсть визуально отделитьодну часть сада от другой, еще это называется зонированием, в том слечае.

ДЕКОРАТИВНЫЕ ОГРАДЫ СВОИМИ РУКАМИ. Что можно предпринять, если в Вашем саду есть хозяйственная зона, и она выглядит не слишком эффектно, или пытается несколько.

Керамический блок или газобетон: что лучше?

Выбор материала для строительства дома должен быть максимально осмысленным и учитывать все возможные риски. В нашей статье мы сравним два самых популярных конкурента среди стеновых материалов:

  • Газоблок
  • Керамоблок

Экологичность

Теплопроводность

Сравнивая аналогичные по толщине стены и плотности керамические блоки с газосиликатными, мы видим, что коэффициент теплопроводности у газобетона чуть ниже, соответственно он чуть теплее. Но тут есть несколько важных моментов:

  • Для газобетона показатель раcсчитывается в сухой среде. Однако идеальных условий не бывает, и с ростом влажности показатель теплопроводности вырастает в 3 раза. Когда газосиликат выходит с завода, его влажность может доходить до 50%. Это связано с обработкой водяным паром в печах автоклава. Не все производители газобетона афишируют, что расчёт теплопроводности производится без учета клея или раствора, на который он укладывается.
  • Керамический блок расcчитывается по теплопроводности уже с учетом использования цементно-песчаного раствора, что как раз даёт более реальные показатели.

Надо понимать, что фактически по теплопроводности эти блоки сопоставимы. Но керамический материал держит свои характеристики весь срок службы.

Прочность

Прочность – один из самых важных показателей, от него зависит какую нагрузку может выдержать материал в кладке.

  • Газобетон – прочность в зависимости от производителя М35 — М50
  • Керамический блок – прочность в зависимости от производителя М75-М150

М150 означает, что каждый м2 выдерживает 150 кг. Если сделать расчёт нагрузки на 1 метр кладки газосиликатного блока и керамического, то получается разница в 2 раза!

Также есть показатель — прочность на сжатие (МегаПаскали).

  • Газобетон – 1-5 МПа
  • Керамоблок – 10-15 Мпа

Крепление в блок

Керамический блок выдерживает нагрузку
на вырыв до 500 кг (5кН)

Газобетонный блок – до 300 кг (3кН)

Технология кладки

Газоблок со временем теряет прочность (процесс карбонизации силикатов — переход силикатов в мел). В связи с этими показателями его нужно армировать в кладке каждые 3 ряда + делать армирование в стенах длиннее 6 метров, оконных проемах, и в других местах с усиленной нагрузкой. Это удорожает стоимость кладки и увеличивает время возведения.

Керамические блоки не теряют прочность в кладке. Можно спокойно возводить стены без дополнительного армирования. Есть примеры постройки 10-этажных зданий из тёплой керамики с несущими стенами без армирования.

Геометрия

У газобетона средние отклонения от заявленных размеров 1-2 мм. Это позволяет производить тонкошовную кладку на клей, что уменьшает количество мостиков холода через швы. Также это позволяет наносить более тонкий слой штукатурки в дальнейшем, экономя средства.

У керамоблока средние отклонения 5-6 мм. Поэтому шов при кладке должен быть 8-12 мм. Использование тёплого кладочного раствора компенсирует этот момент, так как он был специально создан для керамических блоков, с максимально приближенным показателем по теплотехнике

Керамический блок легче почти в 2 раза, чем аналогичный блок из газосиликата. Это позволяет сократить нагрузку на фундамент и облегчить кладку строителям. Всё это тоже может позволить сэкономить дополнительные деньги.

Морозостойкость

Этот показатель у обоих материалов отвечает нормам – F50–F100 в зависимости от производителя.

Скорость строительства дома

  • Кроме вышеописанных пунктов (дополнительное армирование, вес, нанесения клея в вертикальные швы), у газобетонных блоков есть ещё одна особенность – это последующая отделка стен штукатуркой. Её нельзя производить сразу, так как газоблок слишком влажный. Как правило, дом отстаивается ещё около 1-2 лет, просушивая газосиликатные блоки.
  • Тёплая керамика изначально сухая – отделку можно производить сразу при положительной температуре.

Комфорт в доме

Дом из керамических блоков также больше подойдёт, если у вас в семье есть аллергики. Это связано с абсолютной гипоаллергенностью блоков.
В газосиликате же присутствуют выделения пыли, что нужно иметь в виду.

Цены на аналогичные блоки по плотности и толщине в среднем идентичны. Цены у каждого материала больше разнятся по производителям – есть премиальные бренды керамических блоков (напр. Поротерм) и также у газобетона есть свои лидеры (напр. Ytong).

Огнестойкость

Оба материала проходят по низким показателям горючести – предел огнейстойкости до 4 часов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector