Alsatelecom.ru

Стройматериалы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Универсальный цинкфосфатный мелкозернистый цемент

Универсальный цинкфосфатный мелкозернистый цемент

Минеральные цементы являются одними из наиболее старых пломбировочных материалов. В состав порошков всех этих цементов входят оксиды цинка, магния, кальция, кремния, алюминия в различных соотношениях. Жидкости представляют собой смеси орто-, пара- и мета-фосфорной кислот с добавлением фосфатов цинка, магния, алюминия.

В зависимости от химического состава минеральные цементы подразделяются на цинк-фосфатные, силикатные и силико-фосфатные.

ЦИНК-ФОСФАТНЫЕ ЦЕМЕНТЫ

Цинк-фосфатные цементы применяют в основном при наложении изолирующих прокладок. Такие свойства, как недостаточная механическая прочность и растворимость в ротовой жидкости, делают его практически пеприюдным для использования в качестве постоянною пломбировочного материала.

Исключение делается лишь в следующих случаях:

— при пломбировании молочных зубов за 1 — 1,5 года до их смены;

— при пломбировании зубов, которые будут покрываться искусственными коронками.

СИЛИКАТНЫЕ ЦЕМЕНТЫ

Силикатные цементы представляют собой систему «порошок-жидкость». Порошок — топко измельченное алюмосиликатное стекло (оксиды кремния, алюминия, кальции, фторид натрия — до 15%, оксида цинка в нем пет). Жидкость — смесь фосфорных кислот.

При отверждении силикатного цемента в результате взаимодействия фосфорной кислоты с частицами порошка образуется кремниевая кислота. Эта реакция подобна процессу полимеризации пластмасс. С течением времени, по достижении определенною рН происходит структурирование геля. Застывший силикатный цемент состоит из не растворенных частях порошка и матрицы, представляющей собой силикагель. В момент внесения цемента в подготовленную кариозную полость его рН=1,6. Нейтральным рН становится лишь через 24 часа. В силикатной пломбе длительное время присутствует свободная фосфорная кислота. За счет этого силикатные цементы при наложении без изолирующей прокладки оказывают выраженное раздражающее действие на пульпу.

Следует отметить, что применение силикатных цементов требует строгого соблюдения рекомендуемого времени замешивания и пломбирования. При несоблюдении этих требований образование геля может начаться до заполнения цементом подготовленной кариозной полости. В таком случае нарушается гелеобразование, структура цемента становится слабой и растворимой в ротовой жидкости.

Положительные свойства силикатных цементов:

— удовлетворительные эстетические качества;

— противокариозное действие (за счет содержания фторидов);

— коэффициент температурного расширения цемента приблизительно равен коэффициенту температурного расширения тканей зуба;

— высокая токсичность для пульпы (обязательна изолирующая прокладка!);

— недостаточная механическая прочность;

— растворимость в ротовой жидкости;

— отсутствие адгезии к тканям зуба;

— значительная усадка при твердении.

Серьезные недостатки силикатных цементов привели к тому, что эти цементы, длительное время бывшие «классическим» материалом для пломбирования фронтальных зубов, в настоящее время практически полностью вытеснены более совершенными реставрационными материалами — композитами, стеклоиономерными цементами, компомерами, вкладками и т.п.

Показаниями к применению силикатных цементов в настоящее время считаются:

1. Полости III класса.

2. Полости V класса во фронтальных зубах.

3. Полости II класса в премолярах (видимые поверхности).

При пломбировании полостей II класса силикатным

цементом, учитывая его низкую механическую прочность, дополнительная площадка не формируется.

Силикатные цементы, как правило, применяются для пломбирования в тех случаях, когда пациент не имеет возможности оплатить лечение с использованием композиционных пломбировочных материалов, СИЦ или вкладки. В настоящее время выпуск силикатных цементов в мире значительно сократился. В нашей же стране пока выпускаются такие цементы как «Силицин» и «Белацин», за рубежом — «Fritex» (SpofaDental), «Silicap» (Vivadent).

СИЛИКОФОСФАТНЫЕ ЦЕМЕНТЫ

Силикофосфатные цементы (СФЦ, «каменные» цементы) представляют собой комбинацию порошков цинк-фосфатного и силикатного цементов. Порошок содержит примерно 80% силикатного и 20% фосфатного цементов. Жидкость — смесь фосфорных кислот. За счет особенностей химического состава их свойства занимают промежуточное положение между силикатными и цинк-фосфатными цементами.

Положительные свойства силикофосфатных цементов:

— богльшая, чем у силикатных и фосфатных цементов механическая прочность;

— меньшее, чем у силикатных цементов, раздражающее действие на пульпу (за счет содержания оксида цинка);

— лучшая, чем у силикатных цементов, прилипаемость к тканям зуба;

— неудовлетворительные эстетические качества;

— недостаточная устойчивость в среде полости рта;

— токсичность для пульпы зуба (применяются с изолирующей прокладкой!).

Показания к применению силикофосфатных цементов ограничены:

1. Полости I класса (на резцах — в области слепой ямки).

2. Полости III класса (на язычной поверхности зуба при сохранении эмали с вестибулярной поверхности).

3. Небольшие полости I класса в молярах и премолярах.

4. Пломбирование зубов, которые планируется покрыть искусственными коронками.

5. Пломбирование зубов с III степенью подвижности при пародонтите.

Силикофосфатным цементам следует отдавать предпочтение при ограниченных финансовых возможностях пациента. Разумеется, при ориентации на высокое качество стоматологической помощи от их использования следует воздержаться.

В нашей стране выпускаются и, к сожалению, в силу экономических причин, довольно широко применяются силикофосфатные цементы «Силидонт—2» и «Беладонт». Именно это, по нашему мнению, является одной из основных причин низкой эффективности терапевтической стоматологической помощи.

За рубежом выпуск и применение силикофосфатных цементов сократились до минимума. Их ограниченно производят лишь несколько фирм. Это такие цементы как: «Universal cement» (SPAD), «TransLit» и «Сирго-DUR» (Merz), «Steinzement» (Drala).

Мы с успехом применяем «Силидонт» для наложения временных пломб длительного срока службы: он дешев, хорошо герметизирует полость, сохраняет форму (в том числе и контактные пункты) в течение нескольких месяцев, относительно легко удаляется при помощи турбинной бормашины.

Необходимо упомянуть также о «детских» силикофосфатных цементах, в которых порошок состоит из 60% силикатного и 40% цинк-фосфатного цементов. За счет повышенного содержания оксида цинка происходит относительно быстрая нейтрализация фосфорной кислоты, и цемент раздражающего действия на пульпу практически не оказывает. Такие цементы допускается применять при среднем кариесе без изолирующей прокладки. Конечно, они недостаточно прочны и, следовательно, недолговечны. Их применяют при пломбировании молочных зубов. К «детским» цементам относятся: «Лактодонт» <Россия), «Infantid» (SpofaDental). В настоящее время эти материалы вытесняются из стоматологической практики стеклоиономерными цементами.

Цинк-фосфатный цемент

Цинк-фосфатные цементы широко применяются в стоматологии для фиксации различных видов несъемных протезов, ортодонтических аппаратов, пломбирования каналов зуба, в качестве прокладки для защиты пульпы. Бактерицидные цементы используются в детской стоматологической практике для пломбирования молочных зубов.

Цинк-фосфатные цементы состоят из порошка и жидкости, реагирующих друг с другом во время смешивания с образованием массы цемента, обладающей необходимыми свойствами.

Порошок. Основным ингредиентом порошка цинк-фосфатного цемента является окись цинка. В отдельных композициях применяются небольшие добавки окиси магния, двуокиси кремния, трехокиси висмута и другие составные компоненты, влияющие на рабочую характеристику и конечные свойства приготовленного цемента. Окись магния добавляют к окиси цинка в количестве до 10% для снижения температуры спекания. Двуокись кремния — неактивный наполнитель и его вводят в процессе производства для лучшего спекания. Трехокись висмута добавляют для придания, гладкости (однородности) свежезамешанному цементу, однако в больших количествах она может несколько увеличивать время твердения материала.

Ингредиенты порошка спекают вместе при температуре 1000—1300°С в течение 4—8 ч или дольше в зависимости от применяемой температуры. Полученную массу затем размалывают и превращают в тонкий порошок, который просеивают до получения частиц необходимых размеров. Качество спекания, дисперсность частиц и состав композиции — вот основные факторы, определяющие реактивность порошка при смешивании с жидкостью.

Читайте так же:
Лореаль керастаз цемент для волос

Порошок цинк-фосфатного цемента окрашивают в различные «оттенки. Наиболее популярными являются светло-желтый и серый. Белый порошок большинство врачей применяют при наложении прокладки в глубоких кариозных полостях с целью получения четкого контраста между белым цементом и более желтым дентином. Хотя цвет порошка может в определенной мере регулироваться режимом обжига шихты, более эффективным методом окрашивания является включение в массу порошка небольшого количества основных пигментов. (1/2000 или 1/5000 весовых частей). Для получения серого цвета добавляют окись меди, двуокись магния, черную платину. Желтый порошок может быть получен введением желтой окиси висмута, основных хроматов или органических пигментов. Для получения коричневых или кремоватых оттенков порошка чаще применяют окись железа или титана.

В настоящее время Ленинградский завод медицинских полимеров выпускает четыре наименования фосфатных цементов (фосфат, фосфат для фиксации, вис-фат и фосфат, содержащий серебро). Порошки отечественных фосфатных цементов получают обжигом до спекания при температуре 1000—1350°С шихты, состоящей из описи цинка (80—83%), окиси магния (6—10%), небольших количеств кварца и других добавок, с последующим измельчением продукта обжига. Измельчение образующегося клинкера осуществляют в 200-литровых шаровых мельницах с открытым цинком до остатка на контрольном сите с размером ячейки 60 мкм не более 0,5%·

Каждый из перечисленных выше фосфатных цементов отличается строго определенным составом порошка, режимом термической обработки шихты и соответствующими показателями физико-механических свойств. Так, цемент висфат имеет в составе порошка окись висмута, повышенное количество окиси цинка и окиси магния, а температура обжига шихты на 300— 350°С ниже по сравнению с фосфатным цементом, Окись висмута сокращает интервал схватывания, способствует быстрому нарастанию механической прочности и повышению химической стойкости цемента. Висфат по качеству значительно превосходит фосфат-цемент: растворимость первого не превышает 0,2%, а растворимость второго составляет 0,5—0,6%.

Жидкость. Жидкость цинк-фосфатного цемента получают путем введения в раствор ортофосфорной кислоты алюминия и цинка или других компонентов. Если обычный раствор кислоты содержит около 85% фосфорной кислоты и представляет собой сиропообразную жидкость, то жидкость цемента в конечном итоге содержит около 1/3 воды. Частичная нейтрализация фосфорной кислоты алюминием и цинком смягчает реактивность жидкости. Эти компоненты носят название буферных. Снижение скорости реакции помогает в процессе смешивания получить однородную, без комков, работоспособную цементную массу. Время твердения смешанного цемента можно регулировать соотношением растворенной фосфорной кислоты и воды. Наличие избыточной воды уменьшает, а недостаточное количество воды увеличивает время твердения. Таким образом, путем нейтрализации кислотного раствора или регуляции концентрации кислоты добиваются того, чтобы жидкость цинк-фосфатного цемента реагировала с порошком, формируя цементную массу с оптимальным временем твердения и высокими механическими свойствами.

Жидкость отечественных цинк-фосфатных цементов представляет собой раствор ортофосфорной кислоты, частично нейтрализованной окисью цинка и гидроокисью алюминия. Нейтрализацию кислоты осуществляют при температуре 80—85°С до полного растворения окислов. Полученный раствор выпаривают до определенной плотности, фильтруют и затем отстаивают 10—14 дней. Окончательную плотность жидкости регулируют уплотнением или разведением при подборе жидкости к соответствующей партии порошка, в комплекте с которым она выпускается для применения.

Ранее для цемента каждого наименования изготавливали жидкость определенного состава. С 1972 г. в производстве цементов на Ленинградском заводе медицинских полимеров внедрен один состав жидкости, пригодный для смешивания всех четырех отечественных цинк-фосфатных цементов.

Химизм реакции твердения. В процессе смешивания порошок цинк-фосфатного цемента приходит в контакт с жидкостью и инициируется химическая реакция. В процессе этой реакции происходит частичная нейтрализация жидкости. Поверхность щелочного порошка частично растворяется, реакция сопровождается экзотермическим эффектом.

Соединения, формирующиеся вследствие реакции, происходящей между порошком и жидкостью, называются фосфатами цинка, магния, алюминия и т. д. Твердый цинк-фосфатный цемент в основном представляет собой гидратированную аморфную сеть фосфата цинка, в которой находятся не полностью растворенные частицы порошка. Эта аморфная фаза крайне пористая. Соотношение частичек порошка и фосфатной матрицы варьирует в зависимости от взятого количества порошка и жидкости. Затвердевший цемент, имеющий минимальное количество фосфатной матрицы, имеет лучшие физические свойства и дает лучшие клинические результаты.

Хотя в процессе реакции образуются не кристаллические фосфаты, в последующем может происходить рост кристаллов Zn3 (PO4)2·4Η20 с выделением влаги в процессе твердения.

Характер прохождения реакции между цинк-фосфатным цементным порошком и жидкостью является определяющим в характеристике рабочего времени и конечных свойств цементной массы. Правильное количество порошка, вводимое в жидкость медленно на охлажденной пластинке (около 20°С), обеспечивает необходимую консистенцию цемента. Указанные требования должны строго соблюдаться.

Пластина для смешивания. При наличии тепла рассматриваемая химическая реакция ускоряется, потому что увеличивается молекулярная активность компонентов. В процессе реакции при смешивании окиси цинка и фосфорной кислоты выделяется тепло. Это терло необходимо быстро рассеивать, иначе оно ускоряет реакцию. Такое ускорение реакции уменьшает рабочее время цемента и не позволяет нормально манипулировать с ним до нагрева или твердения.

Применение достаточной толщины охлажденной пластинки не позволяет накапливаться возникающему в процессе реакции теплу. Температура стекла для смешивания должна быть низкой, чтобы эффективно охлаждать цементную массу, но должна быть не столь низкой, чтобы на ее поверхности конденсировалась влага. Достаточная влажность помещения устанавливается при окончательной температуре 18—24°С. В случае конденсации влаги на пластине происходит разжижение жидкости и время твердения цемента сокращается. Умение правильно охлаждать пластину для смешивания без образования дополнительной влаги является чрезвычайно важным для контроля скорости реакции цинк-фосфатного цемента.

Соотношение порошок : жидкость. Количество порошка, которое может быть введено в жидкость, определяет свойства смешиваемой массы цемента. Так, увеличение количества порошка в жидкости является основополагающим в получении оптимальных свойств цемента и определяющим его консистенцию. Чем больше поверхность порошка, реагирующего ς жидкостью, тем быстрее при прочих равных условиях заканчивается реакция.

При заранее дозированном количестве порошка и жидкости или при помещении строго дозированного количества компонентов на пластину как опытная, так и неопытная медицинская сестра могут лучше смещать цемент и получить лучшую его консистенцию. Хотя предельное количество порошка, которое может быть введено в жидкость, определяется необходимой консистенцией, влияние на свойства цемента могут оказывать и другие факторы. Так, минимальный размер цементного замеса должен быть таким, чтобы было удобно с ним работать и судить о правильной консистенции. Это соображение важнее, чем простое приготовление необходимого количества цемента. Нежелательно готовить одну или две капли цементной смеси. Масса полученного материала при этом так мала, что трудно определить его рабочие свойства. Количество жидкости при приготовлении цемента для фиксации вкладки должно быть не менее 0,25 мл. Количество полученного цемента в этом случае удовлетворяет требованиям международного стандарта. Следует учитывать, что существующие дозаторы и капельницы не позволяют получить стабильных капель жидкости.

Читайте так же:
Как приготовить цемент без песка

Хранение жидкости. Жидкость цинк-фосфатного цемента содержит частично нейтрализованный раствор фосфорной кислоты. Если эта жидкость содержится открытой, во влажной атмосфере происходит дополнительное поглощение воды; при сухой окружающей среде содержание воды в жидкости уменьшается.

Установлено, что в процессе постоянного периодического открывания пузырька с жидкостью в течение определенного времени содержание воды в жидкости значительно изменяется. Обычно количество жидкости в наборе превышает примерно на 20% общее количество порошка, необходимого для смешивания цемента в консистенции для фиксации. Оставшуюся последнюю порцию жидкости необходимо выбрасывать, чтобы гарантировать стабильность смешиваемого цемента. К быстрому изменению содержания воды в жидкости может привести неплотное закрытие колпачком пузырька на время, пока жидкость не дозируется.

Время твердения смешиваемого цемента существенно зависит от поглощения или потери воды жидкостью. Избыток воды приводит к ускорению реакции Жидкости с порошком и сокращению времени твердения. При потере воды жидкостью цемента время твердения увеличивается.

Пролитую жидкость нельзя помещать обратно, засасывая концом дозирующего пузырька или пипеткой, так как она может потерять некоторое количество воды за счет ее испарения, вызвать кристаллизацию и загрязнение неиспользованной порции жидкости. Поэтому жидкость большинства цементов помещают в полиэтиленовые пузырьки-капельницы с небольшими отверстиями для дозирования. Такая упаковка лучше всего предохраняет жидкость и наиболее удобна для применения.

Процедуры смешивания. Смешивание начинают введением небольшой порции порошка в жидкость, чтобы выделяющееся тепло образовывалось в небольшом количестве и легко рассеивалось. Такой способ рассеивания тепла в процессе реакции более эффективен, чем смешивание цемента на большой площади охлажденной пластины. Для растирания цемента используют достаточной длины шпатель из нержавеющей стали с узкими лопастями.

В процессе нейтрализации жидкости порошком температура смеси пропорциональна времени смешивания. Так, если в жидкость вводят объем порошка, больший, чем это необходимо для правильного растирания шпателем по поверхности пластины за соответствующее время, температура реакции выше. Большее количество порошка может быть введено в середине периода смешивания. Количество непрореагировавшей кислоты в это время меньше, так как частично она нейтрализована введением первоначального небольшого количества порошка. Количество освобождающегося тепла также невелико и легко поглощается холодной пластиной.

В конце смешивания вновь вводят небольшое количество порошка, чтобы получить окончательную консистенцию цемента. Таким образом, смешивание начинают и заканчивают введением небольшого количества порошка: первая порция, чтобы получить медленную нейтрализацию жидкости при одновременном контроле реакции, и последняя порция — для достижения необходимой консистенции.

Время смешивания цемента должно быть достаточным для удаления выделяющегося тепла и контроля за реакцией твердения, а также для получения гладкой (эластичной), однородной консистенции. Комкование частиц, порошка в смешиваемом цементе отрицательно влияет на прочность массы и толщину пленки Необходимо добиваться гомогенности массы в процессе введения всего количества порошка, каждой его последующей порции.

Адекватным временем правильного приготовления цинк-фосфатного цемента в консистенции для фиксации является 90 с. Время твердения цемента измеряют от начала смешивания, включая последующее перемешивание массы. Если время смешивания чрезвычайно большое, цементная масса в конечном итоге ослабляется из-за разрушения каркаса, который в это время формируется и связывает вместе нерастворенные частицы порошка.

I.Цинкфосфатные цементы

— порошок — окись цинка,

— добавки окиси магния, двуокиси кремния, триокиси висмута.

— Жидкость — водный раствор ортофосфорной кислоты,

— добавки фосфата цинка, алюминия, магния. Жидкость готовят частичной нейтрализацией водного раствора фосфорной кислоты гидратами окисей указанных металлов.

Замешивание порошка с жидкостью проводят на толстой гладкой стеклянной пластине при помощи хромированного или никелированного шпателя. Шпатель с нарушенным покрытием не пригоден. На стеклянную пластинку пипеткой наносят нужное количество жидкости и порошка. Делят порошок на 6 частей. Консистенцию формовочной массы считают нормальной, если при отрыве шпателя от массы она не тянется за ним, а остается, образуя зубцы высотой до 1 мм. Если масса получилась густой, то регулировать ее консистенцию добавлением жидкости нельзя. В этом случае требуется приготовить новую порцию.

Фосфат-цемент вводится в подготовленную полость небольшими порциями с тщательной конденсацией его ко всем стенкам полости. Фосфат-цемент в момент ввода в полость должен находиться в пластичном состоянии, что обеспечивает прилипание цемента к стенкам полости.

— “Фосфат-цемент, содержащий серебро”,

— “Унифас-2” (АО “Медполимер”),

3.Достаточно высокие прочность и адгезия.

1.Раздражение пульпы (из-за кислой среды цементного теста и экзотермической реакцией затвердевания);

2.Отсутствие антибактериального эффекта;

3.Отсутствие химической связи с твердыми тканями зуба;

4.Выраженная деструкция в полости рта.

Унифас 2 (Медполимер, Россия).

Фторидный цинк — фосфатный цемент, имеющий высокую растворимость и низкую прочность из-за наличия в своем составе фтористого соединения, но обладающий противокариозным эффектом.

Состоит из порошка и жидкости.

— для прокладок под другие пломбировочные материалы;

— для пломбирования зубов, подлежащих покрытию коронками;

— для фиксации ортопедических конструкций.

Форма выпуска: выпускается одним из двух цветов №21 – бледно-желтый, №23 – желтый.

Уницем (фирма ВладМиВа).

Универсальный усовершенствованный цинк-фосфатный цемент, обладающий высокими показателями механической прочности и химической устойчивости. Цемент «Уницем» выпускается белый, светло-желтый, золотисто-желтый и бактерицидный, содержащий оптимальное количество серебра.

— в качестве изолирующей прокладки;

— для пломбирования зубов;

— для фиксации вкладок, штифтовых зубов, металлических, пластмассовых, фарфоровых, металлокерамических коронок, мостовидных протезов.

Жидкость дозируется капельницей, пипеткой или с помощью стеклянной палочки. Порошок – дозировочной ложкой-мерником. Для смешивания используют чистую стеклянную пластинку и хромированный шпатель. Смешивание порошка и жидкости следует проводить постепенно. Вначале с жидкостью смешивают половину отмеренного порошка, затем небольшими порциями добавляют оставшуюся часть до получения однородной массы.

Для пломбирования зубов нормальная консистенция достигается при смешивании 4 дозировочных мерников порошка (1г) с 5-6 каплями жидкости. Цементное тесто имеет густую однородную консистенцию, сохраняет пластичность на стекле 1-1,5 мин., а в полости зуба затвердевает в течение 6 мин.

Форма выпуска: порошок 50г или 90г. жидкость 30г или 50г., мерник.

Состав: порошок – окись цинка, магния, алюминия, бора; жидкость «Normal» – водный раствор фосфорной кислоты и фосфата алюминия, жидкость «Rapid» – водный раствор фосфорной кислоты и фосфата алюминия и фосфата цинка.

— прокладочный материал для амальгамовых и композитных пломб;

— материал для временных пломб;

— фиксирование ортопедических конструкций.

Смешивание производят на стеклянной пластинке при помощи шпателя из нержавеющей стали. Соотношение при смешивании для приготовления прокладок и пломб – 2 мерки порошка и 3 капли жидкости. Время смешивания 2-2,5 мин. Период работы (от начала смешивания до начала затвердевания) – 4-4,5 мин. Период затвердевания (от начала смешивания до затвердевания) – 6-7 мин. Окончательное оформление изготовленной прокладки или пломбы можно произвести непосредственно после из затвердевания.

Читайте так же:
Цемент это минеральный материал

Соотношение при смешивании для фиксирования постоянных протезов – 2 мерки порошка и 5 капель жидкости. Время смешивания 60-90 сек. Период работы (от начала смешивания до начала затвердевания) – 3-4 мин. Период затвердевания (от начала смешивания до затвердевания) – 6-8 мин.

Примечание: при применении цемента в непосредственной близости от пульпы, необходимо покрыть дентин тонким слоем гидроокиси кальция.

Мелкодисперсный фосфатный цемент, благодаря чему хорошо смешивается, пластичен. Возможно нанесение сверхтонким слоем. Является стандартным цементом для прокладок и для постоянной фиксации ортопедических конструкций.

Форма выпуска: комбиупаковка 90 г порошка и 50 мл жидкости, а также дополнительная упаковка 90 г порошка и дополнительная упаковка 50 мл жидкости.

Свойства: высокая степень адгезии, стабильность объема, стойкость сжатия, слабая степень кислотности и растворимости. Порошок выпускается светло-желтого оттенка №3. Его можно смешивать только с жидкостью Septoscell.

Необходимо использовать гладкую толстую стеклянную пластинку. Для приготовления прокладки 1 ложку дозатора цементного порошка перемешать, растирая с тремя каплями жидкости. Насыпать цементный порошок в жидкость и перемешивать его следует небольшими порциями, используя при этом шпатель из нержавеющей стали. Смесь должна быть приготовлена за 1,5 мин. Затвердевание в полости рта займет 5-6 мин.

Примечание: затвердевание произойдет быстрее, если доля порошка будет увеличена относительно жидкости, сокращено время перемешивания или будет иметь место высокая температура окружающей среды и наоборот.

— Нельзя засыпать во флакон порошок, оставшийся на стеклянной пластинке после приготовления смеси.

— В связи с тем, что жидкость является гигроскопичной, флакон следует герметично закрывать после каждого использования.

— Перед тем как взять из флакона очередную порцию цементного порошка, его необходимо несколько раз встряхнуть.

Форма выпуска: упаковка, которая содержит 1 флакон порошка 90 г, флакон жидкости 42 мл, ложечку-дозатор, блок-подставку для приготовления смеси.

II.Поликарбоксилатные цементы(Селфаст, Дурелон)

— порошок – оксид цинка с добавлением оксида магния.

— Жидкость – 37%-ная полиакриловая кислота.

Основным преимуществом поликарбоксилатного цемента является его способность химически связываться с эмалью и дентином. Это происходит за счет хелатного соединения карбоксилатных групп полимерной молекулы кислоты с кальцием твердых тканей зуба.

Замешивают на гладкой стороне сухой и чистой стеклянной пластинки с помощью шпателя. Для прокладок оптимальным соотношением является 0,4 г порошка (1 мерник) и 0,2 г жидкости (2 капли). Процесс смешивания должен осуществляться не более 20-30 секунд с момента введения порошка. Порцию порошка делят на две части. Первую часть соединяют с жидкостью и замешивают в течение 15 сек, затем добавляют оставшуюся половину порошка и замешивают еще 15 сек до получения массы однородной консистенции. Применять получившуюся пасту следует в течение 1,5-2 мин от начала смешивания.

— “DurelonPowder” (3М ESPE),

1.химическая адгезия к зубу;

2.низкая токсичность (Карбоксилатные цементы более совместимы с пульпой, чем цинкоксид-фосфатные, т.к. кислота медленно диффундирует в направлении пульпы. При этом количество свободной кислоты незначительно);

1.растворяются в ротовой жидкости;

2.усадка карбоксилатных цементов значительно больше, чем цинкоксид-фосфатных;

3.менее прочные (они не пригодны для использования на участках зубов, подверженных значительным нагрузкам);

4.не обладают химическим сцеплением с золотом и платиной (не пригодны для фиксации коронок из золота по сравнению с цинкоксид-фосфатными цементами).

Поликарбоксилатный цемент, предназначенный для прокладок под постоянные пломбы из амальгамы, пластмассы и силикатного цемента, а также для пломбирования молочных зубов, для фиксации вкладок, различных видов коронок, небольших мостовидных протезов, ортодонтических аппаратов. Состоит из порошка и жидкости. Порошок представляет собой модифицированную окись цинка, жидкость – водный раствор полиакриловой кислоты. Белокор обладает выраженными адгезивными свойствами, слабой растворимостью в полости рта, не оказывает раздражающего действия на пульпу зуба.

Для прокладок под постоянные пломбы, а также для пломбирования зубов оптимальным соотношением является 2 мерника порошка и 5-7 капель жидкости.

Форма выпуска: порошок 20 г., жидкость 10 мл.

Замешиваемый на воде карбоксилатный цемент для прокладок и фиксации несъемных ортопедических и ортодонтических конструкций. Хорошо соединяется с дентином и, благодаря малому содержанию кислоты, не вызывает раздражения пульпы. Aqualox дает хорошую противокислотную защиту, имеет отличные физические свойства, стабилен.

Форма выпуска: порошок 50 г с дозирующим капли флаконом.

Сверхтонкий порошок, обладающий хорошими физическими и химическими свойствами. Универсальный набор оттенков и низкое содержание кислоты позволяют использовать его для прокладок и фиксации ортопедических конструкций.

Форма выпуска: комбиупаковка 50 г порошка и 20 мл жидкости.

Показан в качестве изолирующей прокладки для лечения кариеса, а также для фиксации всех видов несъемных протезов.

— отлично взаимодействует с дентином и металлами;

— большая твердость с повышенной гибкостью;

— стабильность размеров после затвердения;

— время затвердения мало изменяется в зависимости от температуры и влажности.

Способ применения для изолирующей прокладки. На 1 дозировочную ложку порошка добавить 3 капли жидкости, перемешивать в течение 30 сек. Время работы 3 минуты. До внесения Selfast в кариозную полость ее следует хорошо высушить.

Примечание: Selfast хорошо взаимодействует с металлами, поэтому сразу же после замешивания шпателем из нержавеющей стали, последний необходимо тщательно очистить. Смесь можно использовать до тех пор, пока она блестящая.

Форма выпуска: коробка, которая содержит 1 флакон порошка 60 г, 1 флакон жидкости 40 мл, 1 блок для замешивания, 1 дозировочная ложка.

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с) .

Цинкфосфатирование: составы и реакционные процессы

Составы для получения цинк-фосфатных покрытий на стальной поверхности, по существу, являются кислыми растворами, содержащими дигидрофосфат цинка Zn(H2PO4)2, ускорители, такие как нитрат цинка, и добавки, для регулирования зернистости и веса покрытия. В водных растворах дигидрофосфат цинка существует в нескольких формах.

Равновесие между разными формами зависит от температуры. Повышенная температура раствора вызывает осаждение менее растворимого моногидрофосфата цинка ZnHPO4 в виде суспензии (взвеси) Zn(H2PO4)2 → 2ZnHPO4 + H3PO4

Избежать этого возможно, добавляя небольшие количества фосфорной кислоты, которая сдвигает равновесие реакции в сторону формирования дигидрофосфата цинка.

На практике концентрация трёхзамещённого фосфата цинка (Zn3(PO4)2 )в ванне почти близка к насыщению. Поверхность металла при контакте с содержимым ванны подвергается воздействию фосфорной кислоты, в результате чего образуется дигидрофосфат железа (Fe(H2PO4)2) в соответствии с реакцией.

Fe + 2H3PO4→Fe(H2PO4)2 + H2

При этом, по мере убыли фосфорной кислоты рН на границе металл-раствор возрастает и содержание фосфата цинка (Zn3(PO4)2 ) и гидрофосфата железа (FeHPO4) превышает пределы растворимости. Они оседают на поверхности металла в местах реакции, образуя нерастворимый слой значительной толщины. С другой стороны, рН раствора остаётся низким, предотвращая образование нерастворимой взвеси фосфата цинка.

В целом образование фосфатного слоя можно представить следующими реакциями:

3Zn2+ + 6H2PO4- + 4H2O→Zn3(PO4)2 x 4H2O (ГОПЕИТ)+ H3PO4
2Zn2++ Fe2+ + 6H2PO4- + 4H2O → Zn2Fe(PO4)2 x4H2O (ФОСФОФИЛИТ) + 4H3PO4

Читайте так же:
Правильное соотношение цементного раствора

Процесс фосфатирования можно ускорить путём повышения его температуры. Достаточно высокие скорости фосфатирования могут быть достигнуты при 90 – 100 ОС. Это, безусловно, приводит к относительно высокому потреблению энергии, особенно в случаях, когда ведётся обработка массивных деталей, поглощающих большое количество тепла.

Наиболее дешёвым и наиболее эффективным способом является применение ускоряющих агентов. Таким образом приемлемые скорости фосфатирования могут быть достигнуты при относительно низких температурах. Существует много видов ускорителей, описанных в патентной литературе, таких как окисляющие агенты (азотная кислота, нитраты, нитриты, бораты, хлораты), вещества-восстановители (гипосульфиты, фосфиты, бензальдегид, гидроксиламин), органические азотсодержащие компоненты, соли меди и т. п. Наиболее эффективными и наиболее широко используемыми являются ускорители окисляющего типа. Ускоряющее действие окисляющих агентов будет описано только в общих чертах, поскольку подробный механизм выходит за рамки этой статьи. Эти продукты окисляют водород в пограничном с металлом слое толщиной порядка молекулярного размера. Одновременно ионы двухвалентного железа (Fe²+) окисляются до ионов трёхвалентного железа (Fe³+), которые из-за из низкой растворимости осаждаются. Обе реакции стимулируют дальнейшее растворение железа.

Растворимые соли железа оказывают очень плохое влияние на эффективность фосфатирования. Во-первых, уменьшается скорость фосфатирования, во-вторых, что ещё хуже, ухудшается коррозионная стойкость фосфатных слоёв из-за их пористой структуры. Поэтому для получения хороших результатов необходимо регулирование содержания железа в растворе. В случае слишком высокой концентрации ионов железа (Fe²+), добавка определённого количества окисляющих агентов (нитрит натрия, перекись водорода, хлораты и пр.) может привести к окислению ионов двухвалентного железа до нерастворимых ионов трёхвалентного железа, которые удаляют из ванны в виде взвеси

фосфата железа. Если содержание взвеси слишком высокое, эффективность фосфатирования будет также сильно снижаться, если не очищать всё содержимое ванны.

В ходе фосфатирования в присутствии железа нитрат восстанавливается до нитрита или до нитрозосоединений, которые могут реагировать только с водородом, образующимся при растворении железа фосфорной кислотой. Поэтому для ускорения фосфатирующего действия ванны более эффективным является добавление именно нитритов в виде нитрита натрия. Нитрит натрия производит двойное действие на ускорение процесса фосфатирования. Он способствует образованию фосфата цинка за счёт превращения дигидрофосфата цинка и в то же время окисляет двухвалентное железо до трёхвалентного.

Нитрит натрия является очень сильным окислителем. Поэтому скорость фосфатирования в растворе на основе фосфата цинка, содержащем нитрит, очень высокая. При температуре ванны 40-80⁰С время погружения составляет всего от 3 до 10 мин. в зависимости от температуры ванны и желаемой толщины слоя. При фосфатировании методом распыления время фосфатирования составляет всего 1- 2 мин. Нитрит натрия в кислой среде неустойчив. Его неустойчивость, которая приводит к образованию окислов азота, больше проявляется при повышенных температурах. Для обеспечения хорошей стабильности ванны желательна низкая рабочая температура. При получении цинкфосфатных покрытий с использованием нитритных ускорителей следует избегать температуры выше 80 ⁰С.

Если концентрация нитрита в ванне уменьшается вследствие его расхода на окисление двухвалентного железа или вследствие его разложения, концентрация двухвалентного железа увеличивается, снижая таким образом эффективность работы ванны. В продолжительно работающих фосфатирующих ваннах концентрация нитрита в растворе должна поддерживаться периодическим добавлением нитрита натрия. С другой стороны избыточное содержание нитрита будет вызывать повышенное образование взвеси фосфата железа. В предельных случаях, когда концентрация нитрита натрия слишком высока, происходит дополнительно и осаждение гидрофосфата цинка, ZnHPO4. В таких случаях образование взвеси происходит даже интенсивней. Ещё одним негативным влиянием избытка нитритов является образование очень толстого цинкфосфатного слоя неоднородной структуры. Оптимальная концентрация нитрита натрия, обеспечивающая хорошую работу ванны находится в пределах от 0,1 до 1,0 г/л. В условиях хорошо регулируемой работы использование ванны с ускорителями-нитритами практически неограниченно, если взвесь, образующаяся в процессе работы, периодически удаляется.

Хлорат натрия – это другой окисляющий агент, широко применяющийся для ускорения процесса фосфатирования. Преимуществом хлората натрия в сравнении с нитритом натрия является то, что его добавление возможно к концентрированным растворам фосфата цинка или фосфорной кислоты, так как он устойчив в кислой среде. Это позволяет готовить одноупаковочные цинкфосфатные растворы, которые особенно удобны, когда концентрацию фосфатирующего раствора необходимо корректировать путём добавления фосфатирующего агента. В этом случае, соотношение фосфат цинка/ускоритель остаётся постоянным, чем обеспечивается осаждение слоя во времени одинакового по качеству. Это очень важно для продолжительно работающих линий. Недостатком ускорителя хлората натрия является образование хлорида натрия, концентрация которого непрерывно увеличивается в процессе работы ванны.

В комбинации с окисляющими агентами в качестве ускорителей фосфатирования стали часто используются соли металлов. В принципе, могут быть использованы соли меди, никеля, кобальта, серебра и золота, но, по очевидным коммерческим соображениям, на практике используются только первые две соли. В процессе фосфатирования эти металлы осаждаются на поверхности стали и служат катодами, ускоряя таким образом растворение фосфата железа. Одновременно они катализируют разложение нитрата и ускоряют окисление.

Защитная функция фосфатного покрытия сильно зависит от кристаллической структуры плёнки. В целом с уменьшением размера зерна защита улучшается. Размер кристаллов цинкфосфатного конверсионного слоя в большой степени зависит от вида очищающего агента, используемого на предыдущей стадии. В особенности, при применении очень концентрированных щелочных растворов, часто использующихся в процессах очистки

методом погружения, кристаллы осаждённого фосфата цинка имеют нежелательный размер.

Более мелкая кристаллическая структура может быть получена путём увеличения температуры ванны. Однако, при использовании соответствующих добавок, температуру можно уменьшить без обратного воздействия на размер зерна. Это может быть достигнуто двумя путями: добавками регуляторов роста кристаллов в ванну до фосфатирования или добавками регуляторов роста кристаллов непосредственно в фосфатирующий раствор.

Добавки солей титана в количестве 1- 10 мг/л в щелочной очищающий раствор приводят к уменьшению размера кристаллов осаждённого фосфата цинка. Хорошие результаты могут быть получены путём применения специальной промывки. Например, промывка погружением в раствор органической кислоты способствует получению тонкой кристаллической структуры при последующем получении фосфатного покрытия.

Очень тонкая кристаллическая структура может быть получена путём модификации фосфатирующего раствора добавками так называемых регуляторов роста кристаллов, в качестве которых служат фосфаты кальция и бария и органические комплексообразующие агенты, такие как лимонная и винная кислоты. Наилучшие результаты получаются при использовании ионов кальция. Предполагается, что в составе осаждённых тонких кристаллов на стальной поверхности содержится фосфат цинка-кальция, который соответствует формуле CaZn2(PO4)2·2H2O. Из-за тонкой кристаллической структуры осаждённое к покрытие более плотное и менее пористое по сравнению с обычным цинкфосфатным покрытием. Поэтому оно и обеспечивает более высокую противокоррозионную защиту. Толщина слоя его такая же как и цинкфосфатного

Технология применения глиноземистого цемента

Глиноземный цемент – важный компонент строительных бетонов и растворов, обладающих высокой жаропрочностью.

Это быстротвердеющее вещество обладает рядом свойств, позволяющих создавать материалы и конструкции, которые невозможно получить, применяя обычный портландцемент.

  1. Что называют глиноземистым цементом
  2. Различия между глиноземистым и портландцементом
  3. Технология изготовления
  4. Свойства, преимущества и недостатки
  5. Применение глиноземистых материалов
  6. Использование глиноземистого цемента частными застройщиками
  7. Технические характеристики
Читайте так же:
Как изготовить раствор цемента с песком

Что называют глиноземистым цементом

Один из важнейших строительных материалов в условиях повышенной влажности – глиноземистый цемент.

Быстротвердеющее в воздушной и водной среде, это вещество с высокими прочностными показателями незаменимо в строительстве в качестве компонента высокотемпературных и гидроизоляционных растворов и бетонов.

Встречающееся название «глиноземистый портландцемент» не корректно, так как глиноземистый цемент и портландцемент – разные материалы.

В промышленности востребованы два вида алюминатного цемента – глиноземистый (ГЦ) (35% Al2O3) и высокоглиноземистый (ВГЦ) (60-80% Al2O3).

Различия между глиноземистым и портландцементом

Хотя алюминатная смесь и портландцемент имеют общее назначение, из-за разницы в минеральном составе свойства материалов значительно различаются.

Краткий перечень отличий:

  • набор прочности ГЦ протекает как экзотермическая реакция, которая может проходить до суток;
  • плотность монолита ГЦ значительно превышает показатели портландцемента;
  • водонепроницаемость монолита ГЦ на порядок превышает показатель классического цемента;
  • ГЦ достигают расчетной прочности через трое суток, портландцемент выходит на тот же показатель прочности через двадцать восемь суток;
  • монолит из алюминатного цемента больше подвержен деструктивному воздействию щелочной среды, чем стандартный материал.

Бетоны на портландцементе во влажной среде быстро теряют свои качества – проникая в поры, влага вызывает коррозию арматуры, а растворимые соли разрушают структуру монолита.

Глиноземистые составы лишены этих недостатков.

Выпуск алюминатного материала составляет меньше 1% от всего объема производимого цемента. Причина – дефицит сырья и высокая стоимость ГЦ.

Технология изготовления

В качестве сырья для получения ГЦ используют известняки CaCO3 и бокситы с общей формулой Al2O3*nH2O.

Бокситы неоднородны по своему составу и содержат окислы алюминия (Al2O3), кремния (SiO2), железа (Fe2O3) и другие.

В производстве ГЦ используют бокситы с кремневым модулем (коэффициентом качества), который рассчитывается как соотношение Al2O3/ SiO2 %, и составляет не менее 2%.

В связи с дефицитом бокситов в России используют бокситовую железную руду, к которой добавляют известняк и железный лом. В качестве клинкеров применяют доменные гранулированные шлаки.

Использование этих материалов в качестве сырья позволяет значительно снизить стоимость алюминатных составов.

Существуют два основных метода производства высокоглиноземистого цемента.

  1. Плавление при t-1400° С

При температуре в специальных барабанах шихту расплавляют. Дают полученному продукту остыть и измельчают до состояния мелкодисперсного порошка.

  1. Спекание при t-1300° С

Исходное сырье измельчают до порошка и обжигают в печах. После остывания полученных гранул их перемалывают в мелкий порошок.

Внимание! Продукт, полученный методом плавления на порядок превосходит по качеству ГЦ, полученный спеканием.

Российские производители алюминатных смесей преимущественно изготавливают ГЦ методом плавления.

Свойства, преимущества и недостатки

Глиноземистые цементы – это темный мелкодисперсный порошок, который в воздушной и водной среде в смеси с водой образует твердеющие в короткие сроки вяжущие материалы.

Составы на их основе обладают рядом уникальных качеств:

  • высокой скоростью схватывания и быстрым набором расчетной прочности;
  • возможностью работать с растворами при низких температурах;
  • способностью образовывать высокопрочный монолит, обладающий огнеупорными свойствами;
  • индифферентным отношением к агрессивным средам (кроме щелочных).
  • по скорости схватывания и времени набора прочности на порядок превосходит лучшие показатели портландцемента;
  • повышенная морозоустойчивость;
  • отсутствие коррозии и нечувствительность к агрессивным средам;
  • высокие значения огнеупорности изделий;
  • отличная защита армирующей сетки бетонных изделий от внешних воздействий;
  • высокоглиноземистый и расширяющийся виды ГЦ используют в работах высокой сложности, невыполняемых другими материалам.
  • высокая стоимость ГЦ, связанная с особенностью производства;
  • нельзя применять для заливки больших площадей – из-за выделения тепловой энергии при наборе прочности схватывание проходит неравномерно, что приводит к деструкции;
  • из-за выделения тепла продукт нельзя применять при температурах свыше 30° С;
  • разрушаются под действием щелочных сред.

Обратите внимание! Качество глиноземистого материала напрямую зависит от степени дисперсности – чем тоньше помол, тем лучше схватывание и выше характеристики прочности.

Применение глиноземистых материалов

Хотя ГЦ обладает целым рядом преимуществ в сравнении с традиционным цементом, широкого применения он не нашел. Причиной ограниченной области использования продукта является высокая цена – он в 3-5 раза дороже стандартного цемента.

Поэтому глиноземистые смеси применяют только там, где использование более дорогого материала оправдано его специфическими свойствами.

Глиноземный цемент незаменим при выполнении следующих работ:

  • при ремонтных работах по восстановлению элементов гидротехнических сооружений, в том числе гидроизоляции очистных сооружений;
  • как гидроизоляционный материал при тампонаже нефтяных скважин;
  • в судоходстве для устранения пробоин корпуса;
  • гидроизоляции аварийных протеканий канализационных и водопроводных сетей;
  • при ремонте душевых комнат и бассейнов;
  • для получения раствора, способного твердеть и обретать прочность за короткое время – 1, 2 или 7 суток;
  • для получения гидроизоляционной штукатурки;
  • при возведении конструкций, в процессе эксплуатация которых предусмотрен контакт с агрессивными средами (исключая щелочные);
  • для антикоррозионной защиты сетки арматуры;
  • при изготовлении отдельных изделий и бетонов с огнеупорностью до 1700° С.

Благодаря своим свойствам, ГЦ используется в строительстве как компонент расширяющихся, огнеупорных, быстротвердеющих, напрягающих и других специальных составов.

Благодаря огнеупорности алюминатные составы широко используют в металлургии как составная часть жаропрочных сухих смесей и бетонов.

Использование глиноземистого цемента частными застройщиками

При кладке каминов, печей и дымоходов в частном домостроении успешно используется такая особенность ГЦ, как огнеупорность.

Гидроизоляционные свойства состава находят применение при строительстве подвалов и погребов, где материал используется в качестве связывающего раствора.

Обратите внимание! Из-за быстрого схватывания готовить растворы глиноземистых цементов следует в короткие сроки.

Технические характеристики

Российские производства выпускают алюминатные составы по ГОСТу 969-91 тремя основными марками (ГЦ-40, ГЦ-50 и ГЦ-60).

Высокоглиноземистые цементы имеют маркировку ВГЦ I, ВГЦ II и ВГЦ III.

Технические показатели различных марок продукта соответствуют следующим значениям:

Свою прочность по марке глиноземистые составы достигают через 72 часа. Для сравнения – у портландцементов эта цифра равняется 28 суткам.

Важно! На упаковках алюминатных смесей часто указывает количество алюминия (AL) в процентах – чем выше это значение, тем прочнее будет монолит.

Глиноземные цементы – качественные и дорогостоящие продукты, обладающие особыми свойствами.

Для получения желаемого результата перед применением состава необходимо ознакомиться со всей информацией по приготовлению и эксплуатации, которая в понятной форме указана на упаковке.

Правильный выбор и использование продукта позволяет создать долговечную конструкцию, обладающую высокой прочностью.

Особенности применения быстродействующего цемента

Что такое цемент — свойства, из чего делают

Строительно-технические свойства портландцемента и его применение

Особенности применения бетон-контакта — как наносить

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector